Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The map of the Witt ring of a domain into the Witt ring of its field of fractions
HTML articles powered by AMS MathViewer

by Thomas C. Craven, Alex Rosenberg and Roger Ware PDF
Proc. Amer. Math. Soc. 51 (1975), 25-30 Request permission

Abstract:

Let $R$ be an integral domain with field of fractions $K$. This paper studies the kernel of the map $W(R) \to W(K)$, where $W$ is the Witt ring functor. In case $R$ is regular and noetherian, it is shown that the kernel is a nilideal. The kernel is zero if $R$ is a complete regular local noetherian ring with 2 a unit. Examples are given to show that the regularity assumptions are needed.
References
    N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Chap. 7, Algèbre commutative, Actualités Sci. Indust., no. 1314, Hermann, Paris, 1965. MR 41 #5339. T. C. Craven, Witt rings and orderings of fields, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1973.
  • Irving Kaplansky, Fields and rings, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0269449
  • Max Karoubi, Périodicité de la $K$-théorie hermitienne, Algebraic $K$-theory, III: Hermitian $K$-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 343, Springer, Berlin, 1973, pp. 301–411 (French). MR 0382400
  • Manfred Knebusch, Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969/70 (1969/1970), 93–157 (German). MR 0271118
  • Manfred Knebusch, Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arith. 24 (1973), 279–299. MR 349582, DOI 10.4064/aa-24-3-279-299
  • Manfred Knebusch, Real closures of commutative rings. I, J. Reine Angew. Math. 274(275) (1975), 61–89. MR 387262, DOI 10.1515/crll.1975.274-275.61
  • Manfred Knebusch, Alex Rosenberg, and Roger Ware, Structure of Witt rings and quotients of Abelian group rings, Amer. J. Math. 94 (1972), 119–155. MR 296103, DOI 10.2307/2373597
  • —, Signatures on semi-local rings, J. Algebra 26 (1973), 208-250.
  • D. G. Northcott, Ideal theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 42, Cambridge, at the University Press, 1953. MR 0058575
  • Albrecht Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116–132 (German). MR 200270, DOI 10.1007/BF01389724
  • Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13K05
  • Retrieve articles in all journals with MSC: 13K05
Additional Information
  • © Copyright 1975 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 51 (1975), 25-30
  • MSC: Primary 13K05
  • DOI: https://doi.org/10.1090/S0002-9939-1975-0384789-1
  • MathSciNet review: 0384789