Some nonprojective subgroups of free topological groups
HTML articles powered by AMS MathViewer
- by Ronald Brown
- Proc. Amer. Math. Soc. 52 (1975), 433-440
- DOI: https://doi.org/10.1090/S0002-9939-1975-0393326-7
- PDF | Request permission
Abstract:
For the free topological group on an interval $[a,b]$ a family of closed, locally path-connected subgroups is given such that each group is not projective and so not free topological. Simplicial methods are used, and the test for nonprojectivity is nonfreeness of the group of path components. Similar results are given for the abelian case.References
- R. Brown and J. P. L. Hardy, Subgroups of free topological groups and free topological products of topological groups, J. London Math. Soc. (2) 10 (1975), no. 4, 431–440. MR 382535, DOI 10.1112/jlms/s2-10.4.431
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125
- M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279–324 (Russian). MR 0025474
- C. E. Hall, ${\mathfrak {F}}$-projective objects, Proc. Amer. Math. Soc. 26 (1970), 193–195. MR 258910, DOI 10.1090/S0002-9939-1970-0258910-5
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- Sidney A. Morris, Remarks on varieties of topological groups, Mat. Časopis Sloven. Akad. Vied 24 (1974), 7–14. MR 460518
- Sidney A. Morris, Edward T. Ordman, and H. B. Thompson, The topology of free products of topological groups, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974, pp. 504–515. MR 0360912 P. Nickolas, Subgroups of the free topological group on $[0,1]$, J. London Math. Soc. (to appear).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 433-440
- MSC: Primary 22A05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0393326-7
- MathSciNet review: 0393326