Not every minimal Hausdorff space is $e$-compact
HTML articles powered by AMS MathViewer
- by R. M. Stephenson
- Proc. Amer. Math. Soc. 52 (1975), 381-389
- DOI: https://doi.org/10.1090/S0002-9939-1975-0423296-4
- PDF | Request permission
Abstract:
A topological space $X$ is said to be $e$-compact with respect to a dense subset $D$ provided either of the following equivalent conditions is satisfied: (i) every open cover of $X$ has a finite subcollection which covers $D$; (ii) every ultrafilter on $D$ converges to a point of $X$. If there exists a dense subset with respect to which a space $X$ is $e$-compact, then $X$ is called $e$-compact.$^{1}$ Two problems recently raised by S. H. Hechler are the following. (a) Is every minimal Hausdorff space $e$-compact? (b) If there exists a Hausdorff space which is $e$-compact with respect to a space $D$, must $D$ be completely regular? The main purpose of this paper is to provide a negative answer to (a) and to present some results which the author hopes will be of use in the solution to (b). These results can also be used to obtain a construction of $\beta X$ for certain completely regular Hausdorff spaces $X$.References
- Bernhard Banaschewski, Über Hausdorffsch-minimale Erweiterung von Räumen, Arch. Math. 12 (1961), 355–365 (German). MR 142097, DOI 10.1007/BF01650574
- M. P. Berri, J. R. Porter, and R. M. Stephenson Jr., A survey of minimal topological spaces, General Topology and its Relations to Modern Analysis and Algebra, III (Proc. Conf., Kanpur, 1968) Academia, Prague, 1971, pp. 93–114. MR 0278254
- Manuel P. Berri and R. H. Sorgenfrey, Minimal regular spaces, Proc. Amer. Math. Soc. 14 (1963), 454–458. MR 152978, DOI 10.1090/S0002-9939-1963-0152978-9
- Nicolas Bourbaki, Espaces minimaux et espaces complètement séparés, C. R. Acad. Sci. Paris 212 (1941), 215–218 (French). MR 5322
- Stephen H. Hechler, On a notion of weak compactness in non-regular spaces, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 215–237. MR 0358692
- Edwin Hewitt, On two problems of Urysohn, Ann. of Math. (2) 47 (1946), 503–509. MR 17527, DOI 10.2307/1969089
- F. Burton Jones, Moore spaces and uniform spaces, Proc. Amer. Math. Soc. 9 (1958), 483–486. MR 93757, DOI 10.1090/S0002-9939-1958-0093757-9
- F. Burton Jones, Hereditarily separable, non-completely regular spaces, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Lecture Notes in Math., Vol. 375, Springer, Berlin, 1974, pp. 149–152. MR 0413044 . M. Katětov, Über $H$-abgeschlossen und bikompakt Räume, Časopis, Pěst. Mat. Fys. 69 (1940), 36-49. MR 1, 317.
- R. M. Stephenson Jr., Minimal first countable Hausdorff spaces, Pacific J. Math. 36 (1971), 819–825. MR 288720, DOI 10.2140/pjm.1971.36.819
- R. M. Stephenson, Two $R$-closed spaces, Canadian J. Math. 24 (1972), 286–292. MR 298613, DOI 10.4153/CJM-1972-023-5
- A. Tychonoff, Über die topologische Erweiterung von Räumen, Math. Ann. 102 (1930), no. 1, 544–561 (German). MR 1512595, DOI 10.1007/BF01782364
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 381-389
- MSC: Primary 54D25
- DOI: https://doi.org/10.1090/S0002-9939-1975-0423296-4
- MathSciNet review: 0423296