A representable functor theorem for compact analytic spaces and applications
HTML articles powered by AMS MathViewer
- by Andrew J. Sommese
- Proc. Amer. Math. Soc. 52 (1975), 11-17
- DOI: https://doi.org/10.1090/S0002-9939-1975-0425190-1
- PDF | Request permission
Abstract:
It is shown that the functor given by maps from a given compact analytic space $X$ into elements of a category $C$ of analytic spaces is representable by a compact element of $C$ if and only if $C$ is closed under finite products and the taking of compact subspaces. Various specific choices are considered. Of special interest is the category of compact hyperbolic spaces which gives rise to a birational invariant when applied to projective manifolds.References
- Henri Cartan, Quotients of complex analytic spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 1–15. MR 0139769
- Adrien Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 1–95 (French). MR 203082
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Jean-Pierre Serre, Prolongement de faisceaux analytiques cohérents, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 363–374 (French). MR 212214 A. J. Sommese, Algebraic properties of the period mapping, Thesis, Princeton University, Princeton, N. J., 1973.
- K. Stein, On factorization of holomorphic mappings, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 1–7. MR 0178161
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 11-17
- MSC: Primary 32J99; Secondary 32C15
- DOI: https://doi.org/10.1090/S0002-9939-1975-0425190-1
- MathSciNet review: 0425190