Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Sequential convergence to invariance in $ BC(G)$

Author: Robert Sine
Journal: Proc. Amer. Math. Soc. 55 (1976), 313-317
MSC: Primary 43A07; Secondary 28A65
MathSciNet review: 0412733
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note it is shown that weak and strong convergence to invariance are equivalent for a sequence of probabilities acting on $ BC(G)$ of a noncompact locally compact group. This result was known for $ G = Z$. For other generalizations of the bounded sequences on $ Z$, say $ BUC(G)$, the result does not hold.

References [Enhancements On Off] (What's this?)

  • [1] Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 0092128
  • [2] S. R. Foguel, Convergence of the iterates of a convolution (to appear).
  • [3] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
  • [4] Johannes Kerstan and Klaus Matthes, Gleichverteilungseigenschaften von Faltungspotenzen auf lokalkompakten abelschen Gruppen, Wiss. Z. Friedrich-Schiller-Univ. Jena/Thüringen 14 (1965), 457–462 (German). MR 0233920
  • [5] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. MR 0027868,
  • [6] John B. Conway, A theorem on sequential convergence of measures and some applications., Pacific J. Math. 28 (1969), 53–60. MR 0238068

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A07, 28A65

Retrieve articles in all journals with MSC: 43A07, 28A65

Additional Information

Keywords: Convergence to invariance, Banach limits, means on groups, almost convergence
Article copyright: © Copyright 1976 American Mathematical Society