A note on countably generated complete Boolean algebras
HTML articles powered by AMS MathViewer
- by Thomas J. Jech
- Proc. Amer. Math. Soc. 56 (1976), 272-276
- DOI: https://doi.org/10.1090/S0002-9939-1976-0398828-6
- PDF | Request permission
Abstract:
In this note, we construct (assuming the G.C.H.) a countably generated cardinal preserving complete Boolean algebra of cardinality ${\aleph _{\omega + 2}}$.References
- H. Gaifman, Infinite Boolean polynomials. I, Fund. Math. 54 (1964), 229–250. MR 168503, DOI 10.4064/fm-54-3-229-250
- A. W. Hales, On the non-existence of free complete Boolean algebras, Fund. Math. 54 (1964), 45–66. MR 163863, DOI 10.4064/fm-54-1-45-66
- Thomas J. Jech, Lectures in set theory, with particular emphasis on the method of forcing, Lecture Notes in Mathematics, Vol. 217, Springer-Verlag, Berlin-New York, 1971. MR 0321738
- R. B. Jensen and R. M. Solovay, Some applications of almost disjoint sets, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp. 84–104. MR 0289291
- Saul A. Kripke, An extension of a theorem of Gaifman-Hales-Solovay, Fund. Math. 61 (1967), 29–32. MR 220641, DOI 10.4064/fm-61-1-29-32
- Robert M. Solovay, New proof of a theorem of Gaifman and Hales, Bull. Amer. Math. Soc. 72 (1966), 282–284. MR 186598, DOI 10.1090/S0002-9904-1966-11493-3 P. Vopěnka and P. Hájek, Theory of semisets, North-Holland, Amsterdam, 1972.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 272-276
- DOI: https://doi.org/10.1090/S0002-9939-1976-0398828-6
- MathSciNet review: 0398828