Continuous actions of compact Lie groups on Riemannian manifolds
HTML articles powered by AMS MathViewer
- by David Hoffman and L. N. Mann
- Proc. Amer. Math. Soc. 60 (1976), 343-348
- DOI: https://doi.org/10.1090/S0002-9939-1976-0423386-7
- PDF | Request permission
Abstract:
M. H. A. Newman proved that if M is a connected topological manifold with metric d, there exists a number $\varepsilon > 0$, depending only upon M and d, such that every compact Lie group acting effectively on M has at least one orbit of diameter at least $\varepsilon$. In this paper the authors consider the case where M is a Riemannian manifold and d is the distance function on M arising from the Riemannian metric. They obtain estimates for $\varepsilon$ in terms of convexity and curvature invariants of M.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Andreas Dress, Newman’s theorems on transformation groups, Topology 8 (1969), 203–207. MR 238353, DOI 10.1016/0040-9383(69)90010-X
- R. C. Gunning, Lectures on Riemann surfaces, Princeton Mathematical Notes, Princeton University Press, Princeton, N.J., 1966. MR 0207977
- David Hoffman, The diameter of orbits of compact groups of isometries; Newman’s theorem for noncompact manifolds, Trans. Amer. Math. Soc. 233 (1977), 223–233. MR 494171, DOI 10.1090/S0002-9947-1977-0494171-0
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225 M. C. Ku, Newman’s theorem for compact Riemannian manifolds, University of Massachusetts (preprint).
- L. N. Mann and J. L. Sicks, Newman’s theorem in the Riemannian category, Trans. Amer. Math. Soc. 210 (1975), 259–266. MR 423388, DOI 10.1090/S0002-9947-1975-0423388-4 M. H. A. Newman, A theorem on periodic transformations of spaces, Quart. J. Math. 2 (1931), 1-9.
- P. A. Smith, Transformations of finite period. III. Newman’s theorem, Ann. of Math. (2) 42 (1941), 446–458. MR 4128, DOI 10.2307/1968910
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 343-348
- MSC: Primary 57E10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0423386-7
- MathSciNet review: 0423386