## Continuity of nonlinear monotone operators

HTML articles powered by AMS MathViewer

- by S. P. Fitzpatrick PDF
- Proc. Amer. Math. Soc.
**62**(1977), 111-116 Request permission

## Abstract:

If a Banach space*E*has an equivalent norm such that $\text {weak}^\ast$ sequential convergence and norm convergence coincide on the dual unit sphere, then every monotone operator on

*E*is single-valued and norm-norm continuous on a dense ${G_\delta }$ subset of

*E*. In particular, this holds for reflexive spaces.

## References

- N. Aronszajn,
*Differentiability of Lipschitzian mappings between Banach spaces*, Studia Math.**57**(1976), no. 2, 147–190. MR**425608**, DOI 10.4064/sm-57-2-147-190 - Edgar Asplund,
*Fréchet differentiability of convex functions*, Acta Math.**121**(1968), 31–47. MR**231199**, DOI 10.1007/BF02391908 - Felix E. Browder,
*Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces*, Trans. Amer. Math. Soc.**118**(1965), 338–351. MR**180884**, DOI 10.1090/S0002-9947-1965-0180884-9
G. Choquet, - P. S. Kenderov,
*The set-valued monotone mappings are almost everywhere single-valued*, C. R. Acad. Bulgare Sci.**27**(1974), 1173–1175. MR**358447** - I. Namioka and R. R. Phelps,
*Banach spaces which are Asplund spaces*, Duke Math. J.**42**(1975), no. 4, 735–750. MR**390721** - Raoul Robert,
*Points de continuité de multi-applications semi-continues supérieurement*, C. R. Acad. Sci. Paris Sér. A**278**(1974), 413–415 (French). MR**348497** - Raoul Robert,
*Une généralisation aux opérateurs monotones des théorèmes de différentiabilité d’Asplund*, Analyse convexe et ses applications (Comptes Rendus Conf., Saint Pierre de Chartreuse, 1974) Lecture Notes in Econom. and Math. Systems, Vol. 102, Springer, Berlin, 1974, pp. 168–179 (French). MR**0482398** - R. T. Rockafellar,
*Local boundedness of nonlinear, monotone operators*, Michigan Math. J.**16**(1969), 397–407. MR**253014** - R. T. Rockafellar,
*On the maximal monotonicity of subdifferential mappings*, Pacific J. Math.**33**(1970), 209–216. MR**262827** - Peter D. Taylor,
*Subgradients of a convex function obtained from a directional derivative*, Pacific J. Math.**44**(1973), 739–747. MR**324407** - Eduardo H. Zarantonello,
*Dense single-valuedness of monotone operators*, Israel J. Math.**15**(1973), 158–166. MR**324490**, DOI 10.1007/BF02764602

*Lectures on analysis*. Vol. 1, Benjamin, New York, 1969. MR

**40**#3252; erratum,

**44**, p. 1630.

## Additional Information

- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**62**(1977), 111-116 - MSC: Primary 47H05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0425687-6
- MathSciNet review: 0425687