Local completeness of operator algebras
Authors:
H. Behncke and J. Cuntz
Journal:
Proc. Amer. Math. Soc. 62 (1977), 95-100
MSC:
Primary 46L05
DOI:
https://doi.org/10.1090/S0002-9939-1977-0428048-9
MathSciNet review:
0428048
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A normed $\ast$-algebra $\mathcal {A}$ is called a local ${C^\ast }$-algebra, if all its maximal commutative $\ast$-subalgebras are ${C^\ast }$-algebras. It is shown that any local ${C^\ast }$-algebra dense in $\mathcal {K}(\mathcal {H})$, the algebra of compact operators on the Hilbert space $\mathcal {H}$ equals $\mathcal {K}(\mathcal {H})$. The same result holds also for local ${C^\ast }$-algebras dense in $A{W^\ast }$-algebras without a ${\text {II}_1}$ summand.
- Horst Behncke, A note on the Gel′fand-Naĭmark conjecture, Comm. Pure Appl. Math. 23 (1970), 189–200. MR 257755, DOI https://doi.org/10.1002/cpa.3160230206
- Horst Behncke and Horst Leptin, Classification of $C^ *$-algebras with a finite dual, J. Functional Analysis 16 (1974), 241–257. MR 0344899, DOI https://doi.org/10.1016/0022-1236%2874%2990073-1
- Frank F. Bonsall and John Duncan, Complete normed algebras, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80. MR 0423029
- Sandra Barkdull Cleveland, Homomorphisms of non-commutative $^{\ast } $-algebras, Pacific J. Math. 13 (1963), 1097–1109. MR 158274
- Joachim Cuntz, Locally $C^ *$-equivalent algebras, J. Functional Analysis 23 (1976), no. 2, 95–106. MR 0448088, DOI https://doi.org/10.1016/0022-1236%2876%2990068-9
- Joachim Cuntz, On the continuity of semi-norms on operator algebras, Math. Ann. 220 (1976), no. 2, 171–183. MR 397419, DOI https://doi.org/10.1007/BF01351703
- Irving Kaplansky, Projections in Banach algebras, Ann. of Math. (2) 53 (1951), 235–249. MR 42067, DOI https://doi.org/10.2307/1969540
- Gert K. Pedersen, Operator algebras with weakly closed abelian subalgebras, Bull. London Math. Soc. 4 (1972), 171–175. MR 320766, DOI https://doi.org/10.1112/blms/4.2.171
- J. R. Ringrose, Linear functionals on operator algebras and their Abelian subalgebras, J. London Math. Soc. (2) 7 (1974), 553–560. MR 336367, DOI https://doi.org/10.1112/jlms/s2-7.3.553
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05
Retrieve articles in all journals with MSC: 46L05
Additional Information
Article copyright:
© Copyright 1977
American Mathematical Society