A countably compact $kā$-space need not be countably $\textbf {bi}-k$
HTML articles powered by AMS MathViewer
- by Roy C. Olson
- Proc. Amer. Math. Soc. 62 (1977), 144-148
- DOI: https://doi.org/10.1090/S0002-9939-1977-0493974-1
- PDF | Request permission
Abstract:
An example is given of a countably compact kā-space that is not countably bi-k. Interest for this example arises from a recent paper of Michael, Olson, and Siwiec and from a 1972 paper of E. Michael, both of which discuss mapping characterizations of a range space. The construction of the example assumes the continuum hypothesis.References
- A. Arhangelā²skiÄ, Some types of factor mappings and the relations between classes of topological spaces, Dokl. Akad. Nauk SSSR 153 (1963), 743ā746 (Russian). MR 0158362
- A. V. Arhangelā²skiÄ, Bicompact sets and the topology of spaces., Trudy Moskov. Mat. ObÅ”Ä. 13 (1965), 3ā55 (Russian). MR 0195046
- A. V. Arhangelā²skiÄ, Frequency spectrum of a topological space and classification of spaces, Dokl. Akad. Nauk SSSR 206 (1972), 265ā268 (Russian). MR 0394575
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- E. Michael, $\aleph _{0}$-spaces, J. Math. Mech. 15 (1966), 983ā1002. MR 0206907
- E. A. Michael, A quintuple quotient quest, General Topology and Appl. 2 (1972), 91ā138. MR 309045, DOI 10.1016/0016-660X(72)90040-2
- E. Michael, R. C. Olson, and F. Siwiec, $A$-spaces and countably bi-quotient maps, Dissertationes Math. (Rozprawy Mat.) 133 (1976), 43. MR 418023
- Roy C. Olson, Bi-quotient maps, countably bi-sequential spaces, and related topics, General Topology and Appl. 4 (1974), 1ā28. MR 365463, DOI 10.1016/0016-660X(74)90002-6
- R. C. Olson, Some results from $A$-spaces, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975ā1976) Academic Press, New York, 1977, pp.Ā 307ā312. MR 0442881
- Frank Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology and Appl. 1 (1971), no.Ā 2, 143ā154. MR 288737, DOI 10.1016/0016-660X(71)90120-6
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 144-148
- MSC: Primary 54D50; Secondary 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1977-0493974-1
- MathSciNet review: 0493974