Upper and lower Fredholm spectra. I
HTML articles powered by AMS MathViewer
- by John J. Buoni, Robin Harte and Tony Wickstead
- Proc. Amer. Math. Soc. 66 (1977), 309-314
- DOI: https://doi.org/10.1090/S0002-9939-1977-0454676-0
- PDF | Request permission
Abstract:
Joint upper and lower Fredholm spectra are defined for n-tuples of bounded linear operators, and the upper Fredholm spectrum is represented both as the simultaneous eigenvalues and as the simultaneous approximate eigenvalues of an n-tuple of operators obtained by a Berberian-Quigley construction.References
- Sterling K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111–114. MR 133690, DOI 10.1090/S0002-9939-1962-0133690-8
- S. R. Caradus, W. E. Pfaffenberger, and Bertram Yood, Calkin algebras and algebras of operators on Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 9, Marcel Dekker, Inc., New York, 1974. MR 0415345
- M. D. Choi and Chandler Davis, The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc. 80 (1974), 317–321. MR 333780, DOI 10.1090/S0002-9904-1974-13481-6
- A. T. Dash, Joint spectrum in the Calkin algebra, Bull. Amer. Math. Soc. 81 (1975), no. 6, 1083–1085. MR 390800, DOI 10.1090/S0002-9904-1975-13925-5
- Chandler Davis and Peter Rosenthal, Solving linear operator equations, Canadian J. Math. 26 (1974), 1384–1389. MR 355649, DOI 10.4153/CJM-1974-132-6
- P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192. MR 322534
- Bernhard Gramsch and David Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17–32. MR 291846, DOI 10.1007/BF02052728
- R. E. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 72 (1972), 89–107. MR 326394
- Arnold Lebow and Martin Schechter, Semigroups of operators and measures of noncompactness, J. Functional Analysis 7 (1971), 1–26. MR 0273422, DOI 10.1016/0022-1236(71)90041-3
- Heinrich P. Lotz, Über das Spektrum positiver Operatoren, Math. Z. 108 (1968), 15–32 (German). MR 240648, DOI 10.1007/BF01110453
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127–148. MR 346555, DOI 10.4064/sm-50-2-127-148
- Vernon Williams, Closed Fredholm and semi-Fredholm operators, essential spectra and perturbations, J. Functional Analysis 20 (1975), no. 1, 1–25. MR 0394276, DOI 10.1016/0022-1236(75)90050-6
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 66 (1977), 309-314
- MSC: Primary 47A10
- DOI: https://doi.org/10.1090/S0002-9939-1977-0454676-0
- MathSciNet review: 0454676