Minimal immersions of low dimensional manifolds
Author:
Robert D. Little
Journal:
Proc. Amer. Math. Soc. 66 (1977), 347-350
MSC:
Primary 57D40; Secondary 55G36
DOI:
https://doi.org/10.1090/S0002-9939-1977-0646071-6
MathSciNet review:
0646071
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that if M is a spin n-manifold, $n \leqslant 7$, then M immerses in ${{\mathbf {R}}^{n + 3}}$.
- Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242–276. MR 119214, DOI https://doi.org/10.1090/S0002-9947-1959-0119214-4
- Ioan James and Emery Thomas, An approach to the enumeration problem for non-stable vector bundles, J. Math. Mech. 14 (1965), 485–506. MR 0175134
- Robert D. Little, A relation between obstructions and functional cohomology operations, Proc. Amer. Math. Soc. 49 (1975), 475–479. MR 418099, DOI https://doi.org/10.1090/S0002-9939-1975-0418099-0
- Robert D. Little, Torsion elements and the classification of vector bundles, Canadian J. Math. 29 (1977), no. 2, 327–332. MR 431169, DOI https://doi.org/10.4153/CJM-1977-036-0 J. Milnor, Lectures on characteristic classes, mimeographed notes, Princeton Univ., Princeton, N. J., 1957.
- Robert E. Mosher and Martin C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, Publishers, New York-London, 1968. MR 0226634
- Paul Olum, Invariants for effective homotopy classification and extension of mappings, Mem. Amer. Math. Soc. 37 (1961), 69. MR 126850
- Paul Olum, Factorizations and induced homomorphisms, Advances in Math. 3 (1969), 72–100. MR 238314, DOI https://doi.org/10.1016/0001-8708%2869%2990003-6
- Emery Thomas, The torsion Pontryagin classes, Proc. Amer. Math. Soc. 13 (1962), 485–488. MR 141132, DOI https://doi.org/10.1090/S0002-9939-1962-0141132-1
- Emery Thomas, Real and complex vector fields on manifolds, J. Math. Mech. 16 (1967), 1183–1205. MR 0210136
- Emery Thomas, Submersions and immersions with codimension one or two, Proc. Amer. Math. Soc. 19 (1968), 859–863. MR 229246, DOI https://doi.org/10.1090/S0002-9939-1968-0229246-4
- Emery Thomas, Vector fields on low dimensional manifolds, Math. Z. 103 (1968), 85–93. MR 224109, DOI https://doi.org/10.1007/BF01110620
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57D40, 55G36
Retrieve articles in all journals with MSC: 57D40, 55G36
Additional Information
Keywords:
Obstructions,
functional cohomology operations,
independent vector fields,
immersions
Article copyright:
© Copyright 1977
American Mathematical Society