The additive inverse eigenvalue problem and topological degree
HTML articles powered by AMS MathViewer
- by J. C. Alexander
- Proc. Amer. Math. Soc. 70 (1978), 5-7
- DOI: https://doi.org/10.1090/S0002-9939-1978-0487546-3
- PDF | Request permission
Abstract:
A short proof using topological degree is given of the additive inverse eigenvalue problem: The diagonal elements of any square complex matrix can be altered so as to cause the altered matrix to have any prescribed set of eigenvalues.References
- Shui Nee Chow, John Mallet-Paret, and James A. Yorke, Finding zeroes of maps: homotopy methods that are constructive with probability one, Math. Comp. 32 (1978), no. 143, 887–899. MR 492046, DOI 10.1090/S0025-5718-1978-0492046-9
- Shmuel Friedland, Matrices with prescribed off-diagonal elements, Israel J. Math. 11 (1972), 184–189. MR 379526, DOI 10.1007/BF02762620
- Shmuel Friedland, On inverse multiplicative eigenvalue problems for matrices, Linear Algebra Appl. 12 (1975), no. 2, 127–137. MR 432672, DOI 10.1016/0024-3795(75)90061-0 —, Inverse eigenvalue problems (preprint). R. B. Kellogg, T. Y. Li and J. A. Yorke, A method of continuation for calculating a Brouwer fixed point, Fixed Points, Algorithms and Applications, S. Karamadian (editor), Academic Press, New York, 1977.
- R. B. Kellogg, T. Y. Li, and J. Yorke, A constructive proof of the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal. 13 (1976), no. 4, 473–483. MR 416010, DOI 10.1137/0713041
- John W. Milnor, Topology from the differentiable viewpoint, University Press of Virginia, Charlottesville, Va., 1965. Based on notes by David W. Weaver. MR 0226651
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 70 (1978), 5-7
- MSC: Primary 55M25; Secondary 15A18
- DOI: https://doi.org/10.1090/S0002-9939-1978-0487546-3
- MathSciNet review: 487546