Quasi-expectations and amenable von Neumann algebras
HTML articles powered by AMS MathViewer
- by John W. Bunce and William L. Paschke
- Proc. Amer. Math. Soc. 71 (1978), 232-236
- DOI: https://doi.org/10.1090/S0002-9939-1978-0482252-3
- PDF | Request permission
Abstract:
A quasi-expectation of a ${C^ \ast }$-algebra A on a ${C^\ast }$-subalgebra B is a bounded linear projection $Q:A \to B$ such that $Q(xay) = xQ(a)y \forall x,y \in B,a \in A$. It is shown that if M is a von Neumann algebra of operators on Hilbert space H for which there exists a quasi-expectation of $B(H)$ on M, then there exists a projection of norm one of $B(H)$ on M, i.e. M is injective. Further, if M is an amenable von Neumann subalgebra of a von Neumann algebra N, then there exists a quasi-expectation of N on $M’ \cap N$. These two facts yield as an immediate corollary the recent result of A. Connes that all amenable von Neumann algebras are injective.References
- Man Duen Choi and Edward G. Effros, Nuclear $C^*$-algebras and injectivity: the general case, Indiana Univ. Math. J. 26 (1977), no. 3, 443–446. MR 430794, DOI 10.1512/iumj.1977.26.26034
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057 —, On the cohomology of operator algebras, preprint, 1976. J. Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien, 2nd ed., Gauthier-Víllars, Paris, 1969.
- Edward G. Effros and E. Christopher Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1–34. MR 448092, DOI 10.1016/0001-8708(77)90085-8
- Jôsuke Hakeda and Jun Tomiyama, On some extension properties of von Neumann algebras, Tohoku Math. J. (2) 19 (1967), 315–323. MR 222656, DOI 10.2748/tmj/1178243281
- Richard V. Kadison and John R. Ringrose, Cohomology of operator algebras. I. Type $I$ von Neumann algebras, Acta Math. 126 (1971), 227–243. MR 283578, DOI 10.1007/BF02392032
- Guyan Robertson, States which have a trace-like property relative to a $C^*$-subalgebra of $B(H)$, Glasgow Math. J. 17 (1976), no. 2, 158–160. MR 415337, DOI 10.1017/S0017089500002913
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- Masamichi Takesaki, On the conjugate space of operator algebra, Tohoku Math. J. (2) 10 (1958), 194–203. MR 100799, DOI 10.2748/tmj/1178244713
- Masamichi Takesaki, On the singularity of a positive linear functional on operator algebra, Proc. Japan Acad. 35 (1959), 365–366. MR 113153
- Masamichi Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249–310. MR 438149, DOI 10.1007/BF02392041
- Jun Tomiyama, On the projection of norm one in $W^{\ast }$-algebras, Proc. Japan Acad. 33 (1957), 608–612. MR 96140
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 232-236
- MSC: Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9939-1978-0482252-3
- MathSciNet review: 0482252