## On the homotopy groups of one point union with a bouquet of circles

HTML articles powered by AMS MathViewer

- by I. Berstein and E. Dror PDF
- Proc. Amer. Math. Soc.
**71**(1978), 321-324 Request permission

## Abstract:

This note points out some properties of the higher homotopy groups of $X \vee K(\pi ,1)$ as modules over $\pi$.## References

- Israel Berstein and Emmanuel Dror,
*On the homotopy type of non-simply-connected co-$H$-spaces*, Illinois J. Math.**20**(1976), no.ย 3, 528โ534. MR**407837** - Samuel Eilenberg and Saunders Mac Lane,
*On the groups $H(\Pi ,n)$. II. Methods of computation*, Ann. of Math. (2)**60**(1954), 49โ139. MR**65162**, DOI 10.2307/1969702 - Ralph H. Fox,
*Free differential calculus. I. Derivation in the free group ring*, Ann. of Math. (2)**57**(1953), 547โ560. MR**53938**, DOI 10.2307/1969736 - Tudor Ganea,
*Some problems on numerical homotopy invariants*, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle Wash., 1971) Lecture Notes in Math., Vol. 249, Springer, Berlin, 1971, pp.ย 23โ30. MR**0339147** - Peter Hilton, Guido Mislin, and Joseph Roitberg,
*On co-$H$-spaces*, Proceedings of the Eleventh Brazilian Mathematical Colloquium (Poรงos de Caldas, 1977) Inst. Mat. Pura Apl., Rio de Janeiro, 1978, pp.ย 729โ751. MR**526377** - Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480**

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**71**(1978), 321-324 - MSC: Primary 55E20
- DOI: https://doi.org/10.1090/S0002-9939-1978-0494092-X
- MathSciNet review: 0494092