Amalgamation and elimination of quantifiers for theories of fields
HTML articles powered by AMS MathViewer
- by William H. Wheeler
- Proc. Amer. Math. Soc. 77 (1979), 243-250
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542092-4
- PDF | Request permission
Abstract:
The universal theories of integral domains and of ordered integral domains which have the amalgamation property are characterized via their existentially complete models. The results of A. Macintyre, K. McKenna, and L. van den Dries on fields and ordered fields whose complete theories permit elimination of quantifiers are then derived as easy corollaries.References
- P. D. Bacsich, Amalgamation properties and interpolation theorems for equational theories, Algebra Universalis 5 (1975), 45–55. MR 381984, DOI 10.1007/BF02485230
- Greg Cherlin, Model theoretic algebra—selected topics, Lecture Notes in Mathematics, Vol. 521, Springer-Verlag, Berlin-New York, 1976. MR 0539999
- Joram Hirschfeld and William H. Wheeler, Forcing, arithmetic, division rings, Lecture Notes in Mathematics, Vol. 454, Springer-Verlag, Berlin-New York, 1975. MR 0389581
- Angus Macintyre, On $\omega _{1}$-categorical theories of fields, Fund. Math. 71 (1971), no. 1, 1–25. (errata insert). MR 290954, DOI 10.4064/fm-71-1-1-25 A. Macintyre, K. McKenna and L. P. D. van den Dries, Elimination of quantifiers in algebraic structures (to appear).
- Bruce Rose, Rings which admit elimination of quantifiers, J. Symbolic Logic 43 (1978), no. 1, 92–112. MR 495121, DOI 10.2307/2271952
- Gerald E. Sacks, Saturated model theory, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1972. MR 0398817
- Joseph R. Shoenfield, Mathematical logic, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967. MR 0225631 L. P. D. van den Dries, Model theory of fields, Dissertation, Utrecht, 1978.
- William H. Wheeler, Amalgamation and elimination of quantifiers for theories of fields, Proc. Amer. Math. Soc. 77 (1979), no. 2, 243–250. MR 542092, DOI 10.1090/S0002-9939-1979-0542092-4
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 243-250
- MSC: Primary 03C60; Secondary 12L99
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542092-4
- MathSciNet review: 542092