An application of the Moore-Penrose inverse to antisymmetric relations
HTML articles powered by AMS MathViewer
- by Robert E. Hartwig
- Proc. Amer. Math. Soc. 78 (1980), 181-186
- DOI: https://doi.org/10.1090/S0002-9939-1980-0550489-X
- PDF | Request permission
Abstract:
Let R be a star-ring and let ${R_\dagger }$ denote the set of star-regular elements in R. It is shown that the relation $a\Delta b$, defined by $a{a^\ast }a = a{b^\ast }a$, is antisymmetric on ${R_\dagger }$ provided that the two-term star-cancellation law and the positive-semidefinite axiom hold in R. This includes the star-regular elements of all ${C^\ast }$-algebras, and in particular those elements in ${{\mathbf {C}}_{n \times n}}$ and $B(H)$, the bounded linear transformations on Hilbert space H.References
- Adi Ben-Israel and Thomas N. E. Greville, Generalized inverses: theory and applications, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0396607
- Sterling K. Berberian, Baer *-rings, Die Grundlehren der mathematischen Wissenschaften, Band 195, Springer-Verlag, New York-Berlin, 1972. MR 0429975 M. P. Drazin, Natural structures on rings and semigroups with involution (submitted for publication).
- M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506–514. MR 98762, DOI 10.2307/2308576
- Ivan Erdélyi, On the matrix equation $Ax=\lambda Bx$, J. Math. Anal. Appl. 17 (1967), 119–132. MR 202734, DOI 10.1016/0022-247X(67)90169-2
- Robert E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal. 61 (1976), no. 3, 197–251. MR 399124, DOI 10.1007/BF00281485
- Irving Kaplansky, Rings of operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0244778
- C. Radhakrishna Rao, Sujit Kumar Mitra, and P. Bhimasankaram, Determination of a matrix by its subclasses of generalized inverses, Sankhyā Ser. A 34 (1972), 5–8. MR 340272
- N. S. Urquhart, Computation of generalized inverse matrices which satisfy specified conditions, SIAM Rev. 10 (1968), 216–218. MR 227186, DOI 10.1137/1010035
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 181-186
- MSC: Primary 16A28; Secondary 15A09
- DOI: https://doi.org/10.1090/S0002-9939-1980-0550489-X
- MathSciNet review: 550489