A remark on the Bochner technique in differential geometry
HTML articles powered by AMS MathViewer
- by H. Wu PDF
- Proc. Amer. Math. Soc. 78 (1980), 403-408 Request permission
Abstract:
It is observed that by pushing the standard arguments one step further, almost all the theorems in differential geometry proved with the help of Bochner’s technique can be sharpened.References
- R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. MR 251664, DOI 10.1090/S0002-9947-1969-0251664-4
- S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776–797. MR 18022, DOI 10.1090/S0002-9904-1946-08647-4
- Jeff Cheeger and Detlef Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119–128. MR 303460
- R. Couty, Sur les transformations des variétés riemanniennes et kählériennes, Ann. Inst. Fourier (Grenoble) 9 (1959), 147–248 (French). MR 121754
- T. Frankel, On theorems of Hurwitz and Bochner, J. Math. Mech. 15 (1966), 373–377. MR 0192450
- R. E. Greene and H. Wu, $C^{\infty }$ convex functions and manifolds of positive curvature, Acta Math. 137 (1976), no. 3-4, 209–245. MR 458336, DOI 10.1007/BF02392418
- K. Kodaira, On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1268–1273. MR 66693, DOI 10.1073/pnas.39.12.1268
- Shoshichi Kobayashi, On compact Kähler manifolds with positive definite Ricci tensor, Ann. of Math. (2) 74 (1961), 570–574. MR 133086, DOI 10.2307/1970298
- Shoshichi Kobayashi, Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70, Springer-Verlag, New York-Heidelberg, 1972. MR 0355886 S. Kobayashi and K. Nomizu, Foundations of differential geometry, Volume 1, Wiley, New York, 1963.
- Shoshichi Kobayashi and Hung-Hsi Wu, On holomorphic sections of certain hermitian vector bundles, Math. Ann. 189 (1970), 1–4. MR 270392, DOI 10.1007/BF01350196 A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
- Oswald Riemenschneider, Characterizing Moišezon spaces by almost positive coherent analytic sheaves, Math. Z. 123 (1971), 263–284. MR 294714, DOI 10.1007/BF01114795
- Oswald Riemenschneider, A generalization of Kodaira’s embedding theorem, Math. Ann. 200 (1973), 99–102. MR 326009, DOI 10.1007/BF01578295
- Joseph A. Wolf, Homogeneity and bounded isometries in manifolds of negative curvature, Illinois J. Math. 8 (1964), 14–18. MR 163262
- H. Wu, Some theorems on projective hyperbolicity, J. Math. Soc. Japan 33 (1981), no. 1, 79–104. MR 597482, DOI 10.2969/jmsj/03310079
- Kentaro Yano, On harmonic and Killing vector fields, Ann. of Math. (2) 55 (1952), 38–45. MR 46122, DOI 10.2307/1969418
- K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR 0062505
- Shing Tung Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR 417452, DOI 10.1512/iumj.1976.25.25051
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 403-408
- MSC: Primary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553384-5
- MathSciNet review: 553384