On the fixed-point theory for local $k$-pseudocontractions
HTML articles powered by AMS MathViewer
- by Claudio Morales
- Proc. Amer. Math. Soc. 81 (1981), 71-74
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589138-4
- PDF | Request permission
Abstract:
Two commonly used boundary conditions which imply existence of fixed points for local strong pseudocontractions in Banach spaces are compared, a previous fixed-point theorem for this class of mappings is improved, and an almost fixed-point result is obtained for local pseudocontractions.References
- W. A. Kirk, A fixed point theorem for local pseudocontractions in uniformly convex spaces, Manuscripta Math. 30 (1979/80), no. 1, 89–102. MR 552364, DOI 10.1007/BF01305991
- W. A. Kirk and Claudio Morales, Fixed point theorems for local strong pseudocontractions, Nonlinear Anal. 4 (1980), no. 2, 363–368. MR 563815, DOI 10.1016/0362-546X(80)90060-7
- W. A. Kirk and Rainald Schöneberg, Some results on pseudo-contractive mappings, Pacific J. Math. 71 (1977), no. 1, 89–100. MR 487615, DOI 10.2140/pjm.1977.71.89
- W. A. Kirk and R. Schöneberg, Mapping theorems for local expansions in metric and Banach spaces, J. Math. Anal. Appl. 72 (1979), no. 1, 114–121. MR 552327, DOI 10.1016/0022-247X(79)90279-8
- R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399–414. MR 318991, DOI 10.1090/S0002-9947-1973-0318991-4
- C. Morales, Pseudocontractive mappings and the Leray-Schauder boundary condition, Comment. Math. Univ. Carolin. 20 (1979), no. 4, 745–756. MR 555187
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 81 (1981), 71-74
- MSC: Primary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1981-0589138-4
- MathSciNet review: 589138