Classes of $L^{1}$-convergence of Fourier and Fourier-Stieltjes series
Author:
Časlav V. Stanojević
Journal:
Proc. Amer. Math. Soc. 82 (1981), 209-215
MSC:
Primary 42A32; Secondary 42A20
DOI:
https://doi.org/10.1090/S0002-9939-1981-0609653-4
MathSciNet review:
609653
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that the Fomin class ${\mathcal {F}_p}(1 < p \leqslant 2)$ is a subclass of $\mathcal {C} \cap \mathcal {B}\mathcal {V}$, where $\mathcal {C}$ is the Garrett-Stanojević class and $\mathcal {B}\mathcal {V}$ the class of sequences of bounded variation. Wider classes of Fourier and Fourier-Stieltjes series are found for which ${a_n}\;{\text {lg}}\;n = o(1),n \to \infty$, is a necessary and sufficient condition for ${L^1}$-convergence. For cosine series with coefficients in $\mathcal {B}\mathcal {V}$ and $n\Delta {a_n} = O(1)$, $n \to \infty$, necessary and sufficient integrability conditions are obtained.
- S. A. Teljakovskiĭ, A certain sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki 14 (1973), 317–328 (Russian). MR 328456 A. N. Kolmogorov, Sur l’ordre de grandeur des coefficients de la série de Fourier-Lebesgue, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. (1923), 83-86. S. Sidon, Hinreichende Bedingungen fur den Fourier-charakter einer trigonometrischen Reihe, J. London Math. Soc. 14 (1939), 158-160.
- John W. Garrett and Časlav V. Stanojević, Necessary and sufficient conditions for $L^{1}$ convergence of trigonometric series, Proc. Amer. Math. Soc. 60 (1976), 68–71 (1977). MR 425480, DOI https://doi.org/10.1090/S0002-9939-1976-0425480-3
- J. W. Garrett, C. S. Rees, and Č. V. Stanojević, $L^{1}$-convergence of Fourier series with coefficients of bounded variation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 423–430. MR 580997, DOI https://doi.org/10.1090/S0002-9939-1980-0580997-7
- G. A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), no. 2, 213–222 (Russian). MR 487218
- S. A. Teljakovskiĭ and G. A. Fomin, Convergence in the $L$ metric of Fourier series with quasimonotone coefficients, Trudy Mat. Inst. Steklov. 134 (1975), 310–313 (Russian). Theory of functions and its applications (Collection of articles dedicated to Sergeĭ Mihaĭlovič Nikol′skiĭ on the occasion of his seventieth birthday). MR 0394013
- J. W. Garrett, C. S. Rees, and Č. V. Stanojević, On $L^{1}$ convergence of Fourier series with quasi-monotone coefficients, Proc. Amer. Math. Soc. 72 (1978), no. 3, 535–538. MR 509250, DOI https://doi.org/10.1090/S0002-9939-1978-0509250-5
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A32, 42A20
Retrieve articles in all journals with MSC: 42A32, 42A20
Additional Information
Keywords:
<IMG WIDTH="28" HEIGHT="23" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="${L^1}$">-convergence of Fourier series and Fourier-Stieltjes series,
integrability of cosine series
Article copyright:
© Copyright 1981
American Mathematical Society