Norming nil algebras
HTML articles powered by AMS MathViewer
- by H. G. Dales PDF
- Proc. Amer. Math. Soc. 83 (1981), 71-74 Request permission
Abstract:
A commutative nil algebra with countable basis is normable, but a commutative nilpotent algebra is not necessarily normable.References
- W. G. Bade and P. C. Curtis Jr., Homomorphisms of commutative Banach algebras, Amer. J. Math. 82 (1960), 589–608. MR 117577, DOI 10.2307/2372972
- H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), no. 2, 129–183. MR 500923, DOI 10.1112/blms/10.2.129
- J. Esterle, Homomorphismes discontinus des algèbres de Banach commutatives séparables, Studia Math. 66 (1979), no. 2, 119–141 (French, with English summary). MR 565154, DOI 10.4064/sm-66-2-119-141
- Jean Esterle, An algebra norm on $l^{2}$ whose restriction to $l^{1}$ is the usual $l^{1}$-norm, Proc. Amer. Math. Soc. 69 (1978), no. 2, 303–307. MR 467314, DOI 10.1090/S0002-9939-1978-0467314-9
- Nathan Jacobson, Lectures in abstract algebra. Vol. II. Linear algebra, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0053905 —, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R.I., 1964.
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 71-74
- MSC: Primary 46J35; Secondary 16A80
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619984-X
- MathSciNet review: 619984