Strong local homogeneity does not imply countable dense homogeneity
HTML articles powered by AMS MathViewer
- by Jan van Mill
- Proc. Amer. Math. Soc. 84 (1982), 143-148
- DOI: https://doi.org/10.1090/S0002-9939-1982-0633296-0
- PDF | Request permission
Abstract:
We give an example of a connected and locally connected subspace of the plane which is Baire and strongly locally homogeneous (as a consequence, the example is homogeneous) but which is not countable dense homogeneous.References
- R. D. Anderson, D. W. Curtis, and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982), no. 1, 311–321. MR 656491, DOI 10.1090/S0002-9947-1982-0656491-8
- Ralph Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972), no. 3, 189–194. MR 301711, DOI 10.4064/fm-74-3-189-194
- Eric K. van Douwen, A compact space with a measure that knows which sets are homeomorphic, Adv. in Math. 52 (1984), no. 1, 1–33. MR 742164, DOI 10.1016/0001-8708(84)90049-5
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696
- J. de Groot, Groups represented by homeomorphism groups, Math. Ann. 138 (1959), 80–102. MR 119193, DOI 10.1007/BF01369667 K. Kuratowski, Sur la puissance de l’ensemble des "nombres de dimension" de M. Fréchet, Fund. Math. 8 (1925), 201-208. M. Lavrentieff, Contribution à la théorie des ensembles homéomorphes, Fund. Math. 6 (1924), 149-160.
- Jan van Mill, Homogeneous subsets of the real line, Compositio Math. 46 (1982), no. 1, 3–13. MR 660152
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 143-148
- MSC: Primary 54G20; Secondary 54F25
- DOI: https://doi.org/10.1090/S0002-9939-1982-0633296-0
- MathSciNet review: 633296