Inequalities in Hilbert modules of matrix-valued functions
HTML articles powered by AMS MathViewer
- by Adhemar Bultheel
- Proc. Amer. Math. Soc. 85 (1982), 369-372
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656105-2
- PDF | Request permission
Abstract:
The classical Cauchy-Schwarz inequality and extremality properties of reproducing kernels are generalized for a module of matrix-valued functions on which a matrix-valued inner product is defined. Reference to an application in the field of linear prediction of multivariate stochastic processes is made.References
- N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404. MR 51437, DOI 10.1090/S0002-9947-1950-0051437-7
- Adi Ben-Israel and Thomas N. E. Greville, Generalized inverses: theory and applications, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0396607
- János Bognár, Indefinite inner product spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78, Springer-Verlag, New York-Heidelberg, 1974. MR 0467261
- A. Bultheel, Orthogonal matrix functions related to the multivariable Nevanlinna-Pick problem, Bull. Soc. Math. Belg. Sér. B 32 (1980), no. 2, 149–170. MR 682639
- Philippe Delsarte, Yves V. Genin, and Yves G. Kamp, Orthogonal polynomial matrices on the unit circle, IEEE Trans. Circuits and Systems CAS-2 (1978), no. 3, 149–160. MR 481886, DOI 10.1109/TCS.1978.1084452
- Ph. Delsarte, Y. Genin, and Y. Kamp, The Nevanlinna-Pick problem for matrix-valued functions, SIAM J. Appl. Math. 36 (1979), no. 1, 47–61. MR 519182, DOI 10.1137/0136005
- Patrick Dewilde and Harry Dym, Lossless chain scattering matrices and optimum linear prediction: the vector case, Internat. J. Circuit Theory Appl. 9 (1981), no. 2, 135–175. MR 612268, DOI 10.1002/cta.4490090203
- Herbert Meschkowski, Hilbertsche Räume mit Kernfunktion, Die Grundlehren der mathematischen Wissenschaften, Band 113, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962 (German). MR 0140912
- Milton Rosenberg, The square-integrability of matrix-valued functions with respect to a non-negative Hermitian measure, Duke Math. J. 31 (1964), 291–298. MR 163346
- N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes. I. The regularity condition, Acta Math. 98 (1957), 111–150. MR 97856, DOI 10.1007/BF02404472
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 369-372
- MSC: Primary 46E20; Secondary 60G25
- DOI: https://doi.org/10.1090/S0002-9939-1982-0656105-2
- MathSciNet review: 656105