Schur indices in finite quaternion-free groups
HTML articles powered by AMS MathViewer
- by A. D. Oh
- Proc. Amer. Math. Soc. 85 (1982), 514-516
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660593-5
- PDF | Request permission
Abstract:
Let $G$ be a finite, quaternion-free group with exponent $e$, let $F$ be a field of characteristic zero and let $\chi$ be an absolutely irreducible character of $G$. Suppose that a Sylow $2$-subgroup of the Galois group of $F{(^e}\sqrt 1 )$ over $F$ is cyclic. It is shown that if $\chi$ is not real valued, then the Schur index of $\chi$ over $F$ is odd.References
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- D. M. Goldschmidt and I. M. Isaacs, Schur indices in finite groups, J. Algebra 33 (1975), 191–199. MR 357570, DOI 10.1016/0021-8693(75)90120-9
- Burton Fein, Schur indices and sums of squares, Proc. Amer. Math. Soc. 51 (1975), 31–34. MR 374249, DOI 10.1090/S0002-9939-1975-0374249-6
- Larry Joel Goldstein, Analytic number theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0498335
- S. Iyanaga (ed.), The theory of numbers, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. With contributions by T. Tannaka, T. Tamagawa, I. Satake, Akira Hattori, G. Fujisaki and H. Shimizu; Translated from the Japanese by K. Iyanaga; North-Holland Mathematical Library, Vol. 8. MR 0444603
- Larry Dornhoff, $M$-groups and $2$-groups, Math. Z. 100 (1967), 226–256. MR 217174, DOI 10.1007/BF01109806
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 514-516
- MSC: Primary 20C15
- DOI: https://doi.org/10.1090/S0002-9939-1982-0660593-5
- MathSciNet review: 660593