Invariant measures for affine foliations
HTML articles powered by AMS MathViewer
- by William M. Goldman, Morris W. Hirsch and Gilbert Levitt
- Proc. Amer. Math. Soc. 86 (1982), 511-518
- DOI: https://doi.org/10.1090/S0002-9939-1982-0671227-8
- PDF | Request permission
Abstract:
A (transversely) affine foliation is a foliation with an atlas whose coordinate changes are locally affine. Such foliations arise naturally in the study of affine structures on manifolds. In this paper we prove that an affine foliation with nilpotent affine holonomy group always admits a nontrivial transverse measure. Two proofs are given: one for noncompact manifolds, and another, valid for compact manifolds with $(G,X)$-foliations (not necessarily affine) having nilpotent holonomy. These results are applied to prove that a certain cohomology class on a compact affine manifold with nilpotent holonomy is nonzero. Examples are discussed.References
- Peter Furness and Edmond Fedida, Feuilletages transversalement affines de codimension 1, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 16, Ai, A825–A827 (French, with English summary). MR 418114
- David Fried, William Goldman, and Morris W. Hirsch, Affine manifolds with nilpotent holonomy, Comment. Math. Helv. 56 (1981), no. 4, 487–523. MR 656210, DOI 10.1007/BF02566225
- P. M. D. Furness and E. Fédida, Tranversally affine foliations, Glasgow Math. J. 17 (1976), no. 2, 106–111. MR 420653, DOI 10.1017/S0017089500002810 W. Goldman, Discontinuous groups and the Euler class, §1, Ph.D. Thesis, University of California, Berkeley, 1980.
- William M. Goldman and Morris W. Hirsch, Polynomial forms on affine manifolds, Pacific J. Math. 101 (1982), no. 1, 115–121. MR 671843 —, Parallel characteristic class of affine manifolds, (in preparation). W. Gottschalk and G. Hedlund, Topological dyamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R.I., 1965.
- Dennis A. Hejhal, Monodromy groups and linearly polymorphic functions, Acta Math. 135 (1975), no. 1, 1–55. MR 463429, DOI 10.1007/BF02392015
- R. S. Kulkarni, On the principle of uniformization, J. Differential Geometry 13 (1978), no. 1, 109–138. MR 520605
- J. F. Plante, Foliations with measure preserving holonomy, Ann. of Math. (2) 102 (1975), no. 2, 327–361. MR 391125, DOI 10.2307/1971034
- Masayoshi Miyanishi, On group actions, Recent progress of algebraic geometry in Japan, North-Holland Math. Stud., vol. 73, North-Holland, Amsterdam, 1983, pp. 152–187. MR 722145, DOI 10.1016/S0304-0208(09)70009-X
- David Ruelle and Dennis Sullivan, Currents, flows and diffeomorphisms, Topology 14 (1975), no. 4, 319–327. MR 415679, DOI 10.1016/0040-9383(75)90016-6
- Bobo Seke, Sur les structures transversalement affines des feuilletages de codimension un, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 1, ix, 1–29 (French, with English summary). MR 576071 D. Sullivan and W. Thurston, Manifolds with canonical coordinates: some examples, Inst. Hautes Etude Sci. Publ. Math., 1979 (preprint).
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975
- Robert A. Blumenthal, Transversely homogeneous foliations, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, vii, 143–158 (English, with French summary). MR 558593
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 511-518
- MSC: Primary 57R30; Secondary 58F11, 58F18
- DOI: https://doi.org/10.1090/S0002-9939-1982-0671227-8
- MathSciNet review: 671227