Stability of isometries on Banach spaces
HTML articles powered by AMS MathViewer
- by Julian Gevirtz
- Proc. Amer. Math. Soc. 89 (1983), 633-636
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718987-6
- PDF | Request permission
Abstract:
Let $X$ and $Y$ be Banach spaces. A mapping $f:X \to Y$ is called an $\varepsilon$-isometry if $|\left \| {f({x_0}) - f({x_1})} \right \| - \left \| {{x_0} - {x_1}} \right \|| \leqslant \varepsilon$ for all ${x_0},{x_1} \in X$. It is shown that there exist constants $A$ and $B$ such that if $f:X \to Y$ is a surjective $\varepsilon$-isometry, then $\left \| {f(({x_0} + {x_1})/2) - (f({x_0}) + f({x_1}))/2} \right \| \leqslant A{(\varepsilon \left \| {{x_0} - {x_1}} \right \|)^{1/2}} + B\varepsilon$ for all ${x_0},{x_1} \in X$. This, together with a result of Peter M. Gruber, is used to show that if $f:X \to Y$ is a surjective $\varepsilon$-isometry, then there exists a surjective isometry $I:X \to Y$ for which $\left \| {f(x) - I(x)} \right \| \leqslant 5\varepsilon$, thus answering a question of Hyers and Ulam about the stability of isometries on Banach spaces.References
- Richard D. Bourgin, Approximate isometries on finite dimensional Banach spaces, Trans. Amer. Math. Soc. 207 (1975), 309–328. MR 370137, DOI 10.1090/S0002-9947-1975-0370137-4
- Peter M. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 245 (1978), 263–277. MR 511409, DOI 10.1090/S0002-9947-1978-0511409-2
- D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288–292. MR 13219, DOI 10.1090/S0002-9904-1945-08337-2
- Andrew Vogt, Maps which preserve equality of distance, Studia Math. 45 (1973), 43–48. MR 333676, DOI 10.4064/sm-45-1-43-48
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 633-636
- MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718987-6
- MathSciNet review: 718987