On homeomorphism spaces of Hilbert manifolds
HTML articles powered by AMS MathViewer
- by Raymond Y. Wong
- Proc. Amer. Math. Soc. 89 (1983), 693-704
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718999-2
- PDF | Request permission
Abstract:
Let $M$ be a Hilbert manifold modeled on the separable Hilbert space ${l^2}$. We prove the following Fibred Homeomorphism Extension Theorem: Let $M \times {B^n} \to {B^n}$ be the product bundle over the $n$-ball ${B^n}$, then any (fibred) homeomorphism on $M \times {S^{n - 1}}$ extends to a homeomorphism on all $M \times {B^n}$ if and only if it extends to a mapping on all $M \times {B^n}$. Moreover, the size of the extension may be restricted by any open cover on $M \times {B^n}$. The result is then applied to study the space of homeomorphisms $\mathcal {H}(M)$ under various topologies given on $\mathcal {H}(M)$. For instance, if $M = {l_2}$ and $\mathcal {H}({l_2})$ has the compact-open topology, the $\mathcal {H}({l_2})$ is an absolute extensor for all metric spaces. A counterexample is provided to show that the statement above may not be generalized to arbitrary manifold $M$.References
- R. D. Anderson, Spaces of homeomorphisms of finite graphs, Illinois J. Math. (to appear).
- R. D. Anderson and R. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315–330. MR 246327, DOI 10.1090/S0002-9947-1969-0246327-5
- Jean Cerf, Groupes d’automorphismes et groupes de difféomorphismes des variétés compactes de dimension $3$, Bull. Soc. Math. France 87 (1959), 319–329 (French). MR 116351
- T. A. Chapman, Homeomorphisms of Hilbert cube manifolds, Trans. Amer. Math. Soc. 182 (1973), 227–239. MR 372863, DOI 10.1090/S0002-9947-1973-0372863-8
- Raymond Y. T. Wong, On homeomorphisms of infinite-dimensional bundles. I, Trans. Amer. Math. Soc. 191 (1974), 245–259. MR 415625, DOI 10.1090/S0002-9947-1974-0415625-6 T. Dobrowolski, correspondence, 1982.
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63–88. MR 283802, DOI 10.2307/1970753
- Steve Ferry, The homeomorphism group of a compact Hilbert cube manifold is an $\textrm {ANR}$, Ann. of Math. (2) 106 (1977), no. 1, 101–119. MR 461536, DOI 10.2307/1971161
- Ross Geoghegan, On spaces of homeomorphisms, embeddings and functions. I, Topology 11 (1972), 159–177. MR 295281, DOI 10.1016/0040-9383(72)90004-3
- David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25–33. MR 250342, DOI 10.1016/0040-9383(70)90046-7
- R. Luke and W. K. Mason, The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract, Trans. Amer. Math. Soc. 164 (1972), 275–285. MR 301693, DOI 10.1090/S0002-9947-1972-0301693-7
- Peter L. Renz, The contractibility of the homeomorphism group of some product spaces by Wong’s method, Math. Scand. 28 (1971), 182–188. MR 305426, DOI 10.7146/math.scand.a-11014
- H. Toruńczyk, Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974), 53–67. MR 365471, DOI 10.4064/fm-86-1-53-67 —, Homeomorphism groups of compact Hilbert cube manifolds which are manifolds, Bulletin, Polish Academy of Science, 1977.
- James E. West, Cartesian factors of infinite-dimensional spaces, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Lecture Notes in Math., Vol. 375, Springer, Berlin, 1974, pp. 249–268. MR 0368014
- Raymond Y. T. Wong, On homeomorphisms of certain infinite dimensional spaces, Trans. Amer. Math. Soc. 128 (1967), 148–154. MR 214040, DOI 10.1090/S0002-9947-1967-0214040-4
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 693-704
- MSC: Primary 57N20; Secondary 54C55, 58D05
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718999-2
- MathSciNet review: 718999