Quotient groups of finite groups
HTML articles powered by AMS MathViewer
- by Pamela A. Ferguson
- Proc. Amer. Math. Soc. 90 (1984), 35-39
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722410-6
- PDF | Request permission
Abstract:
Assume $H$ and ${H_0}$ are subgroups of the finite group $G$ with $H_0 \triangleubar H$. Three theorems are presented which give criteria for the existence of a relative normal complement in $G$ of $H$ over ${H_0}$.References
- Richard Brauer, On quotient groups of finite groups, Math. Z. 83 (1964), 72–84. MR 159872, DOI 10.1007/BF01111110
- David M. Goldschmidt, Strongly closed $2$-subgroups of finite groups, Ann. of Math. (2) 102 (1975), no. 3, 475–489. MR 393223, DOI 10.2307/1971040
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- William F. Reynolds, Isometries and principal blocks of group characters, Math. Z. 107 (1968), 264–270. MR 236280, DOI 10.1007/BF01110015
- Michio Suzuki, On the existence of a Hall normal subgroup, J. Math. Soc. Japan 15 (1963), 387–391. MR 158935, DOI 10.2969/jmsj/01540387
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 35-39
- MSC: Primary 20D40
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722410-6
- MathSciNet review: 722410