Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Recovery of $H^{p}$-functions


Author: V. Totik
Journal: Proc. Amer. Math. Soc. 90 (1984), 531-537
MSC: Primary 30D55
DOI: https://doi.org/10.1090/S0002-9939-1984-0733401-3
MathSciNet review: 733401
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let there be given finitely many points $\{ {\alpha _k}\} _1^n$ from the unit disc. If $f$ is a ${H^p}$-function then how well can the value of $f$ at $z = 0$ be approximated by linear means $\sum \nolimits _1^n {{c_k}f({\alpha _k})?}$ We give the optimal constants ${c_k}$ and get, as a corollary, the possibility of the approximation of $f$ by operators of the form $\sum \nolimits _1^n {f({\alpha _k}){p_k}}$ with polynomials ${p_k}$. The order of approximation depends on the distance $\sum \nolimits _1^n {\left ( {1 - \left | {{\alpha _k}} \right |} \right )}$ of the point system from the unit circle.


References [Enhancements On Off] (What's this?)

  • Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR 0133008
  • Harold S. Shapiro, Topics in approximation theory, Springer-Verlag, Berlin-New York, 1971. With appendices by Jan Boman and Torbjörn Hedberg; Lecture Notes in Math., Vol. 187. MR 0437981
  • G. Somorjai, On discrete linear operators in the function space $A$, Proc. Constructive Function Theory (Blagoevgrad, 1977), Publ. H. Bulgarian Acad. Sci., Sofia, 1980, pp. 489-500. A. F. Timan, Theory of approximation of functions of a real variable, Hindustan, Delhi, 1966.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D55

Retrieve articles in all journals with MSC: 30D55


Additional Information

Keywords: <IMG WIDTH="33" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="${H^p}$"> spaces, disc algebra, approximation
Article copyright: © Copyright 1984 American Mathematical Society