## Criteria for metrisability

HTML articles powered by AMS MathViewer

- by P. J. Collins and A. W. Roscoe
- Proc. Amer. Math. Soc.
**90**(1984), 631-640 - DOI: https://doi.org/10.1090/S0002-9939-1984-0733418-9
- PDF | Request permission

## Abstract:

A simple condition on the local bases of a first countable space is shown to imply metrisability, and some new and some well-known metrisation theorems are deduced. Weakening the condition gives new classes of spaces distinct from the class of metrisable spaces.## References

- P. S. Alexandroff and P. Urysohn,
- R. H. Bing,
*Metrization of topological spaces*, Canad. J. Math.**3**(1951), 175–186. MR**43449**, DOI 10.4153/cjm-1951-022-3
N. Bourbaki, - Geoffrey D. Creede,
*Concerning semi-stratifiable spaces*, Pacific J. Math.**32**(1970), 47–54. MR**254799** - Ralph Fox,
*Solution of the $\gamma$-space problem*, Proc. Amer. Math. Soc.**85**(1982), no. 4, 606–608. MR**660614**, DOI 10.1090/S0002-9939-1982-0660614-X - A. H. Frink,
*Distance functions and the metrization problem*, Bull. Amer. Math. Soc.**43**(1937), no. 2, 133–142. MR**1563501**, DOI 10.1090/S0002-9904-1937-06509-8 - Sitiro Hanai,
*On closed mappings*, Proc. Japan Acad.**30**(1954), 285–288. MR**64390** - R. W. Heath, D. J. Lutzer, and P. L. Zenor,
*Monotonically normal spaces*, Trans. Amer. Math. Soc.**178**(1973), 481–493. MR**372826**, DOI 10.1090/S0002-9947-1973-0372826-2 - R. E. Hodel,
*Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points*, Duke Math. J.**39**(1972), 253–263. MR**293580** - W. F. Lindgren and P. Fletcher,
*Locally quasi-uniform spaces with countable bases*, Duke Math. J.**41**(1974), 231–240. MR**341422** - W. F. Lindgren and P. J. Nyikos,
*Spaces with bases satisfying certain order and intersection properties*, Pacific J. Math.**66**(1976), no. 2, 455–476. MR**445452** - Louis F. McAuley,
*A relation between perfect separability, completeness, and normality in semi-metric spaces*, Pacific J. Math.**6**(1956), 315–326. MR**80907** - E. Michael,
*Yet another note on paracompact spaces*, Proc. Amer. Math. Soc.**10**(1959), 309–314. MR**105668**, DOI 10.1090/S0002-9939-1959-0105668-1 - E. Michael,
*The product of a normal space and a metric space need not be normal*, Bull. Amer. Math. Soc.**69**(1963), 375–376. MR**152985**, DOI 10.1090/S0002-9904-1963-10931-3
R. L. Moore, - Kiiti Morita,
*On the simple extension of a space with respect to a uniformity. IV*, Proc. Japan Acad.**27**(1951), 632–636. MR**52090** - Jun-iti Nagata,
*On a necessary and sufficient condition of metrizability*, J. Inst. Polytech. Osaka City Univ. Ser. A**1**(1950), 93–100. MR**43448** - Jun-iti Nagata,
*A contribution to the theory of metrization*, J. Inst. Polytech. Osaka City Univ. Ser. A**8**(1957), 185–192. MR**97789**
—, - V. W. Niemytzki,
*On the “third axiom of metric space”*, Trans. Amer. Math. Soc.**29**(1927), no. 3, 507–513. MR**1501402**, DOI 10.1090/S0002-9947-1927-1501402-2 - Prabir Roy,
*Failure of equivalence of dimension concepts for metric spaces*, Bull. Amer. Math. Soc.**68**(1962), 609–613. MR**142102**, DOI 10.1090/S0002-9904-1962-10872-6 - Mary Ellen Rudin,
*A new proof that metric spaces are paracompact*, Proc. Amer. Math. Soc.**20**(1969), 603. MR**236876**, DOI 10.1090/S0002-9939-1969-0236876-3 - Yu. Smirnov,
*A necessary and sufficient condition for metrizability of a topological space*, Doklady Akad. Nauk SSSR (N.S.)**77**(1951), 197–200 (Russian). MR**0041420** - A. H. Stone,
*Paracompactness and product spaces*, Bull. Amer. Math. Soc.**54**(1948), 977–982. MR**26802**, DOI 10.1090/S0002-9904-1948-09118-2 - A. H. Stone,
*Sequences of coverings*, Pacific J. Math.**10**(1960), 689–691. MR**119189** - Jingoro Suzuki,
*On the metrization and the completion of a space with respect to a uniformity*, Proc. Japan Acad.**27**(1951), 219–223. MR**48785** - James Williams,
*Locally uniform spaces*, Trans. Amer. Math. Soc.**168**(1972), 435–469. MR**296891**, DOI 10.1090/S0002-9947-1972-0296891-5

*Une condition nécessaire et suffisante pour qu’une classe (L) soit une classe (B)*, C. R. Acad. Sci. Paris

**177**(1923), 1274-1276. A. Arhangel’skii,

*New criteria for the paracompaetness and metrizability of an arbitrary*${T_1}$

*-space*, Soviet Math. Dokl.

**2**(1961), 1367-1369. (Russian)

*General topology*, Part 2, Addison-Wesley, Reading, Mass. and Hermann, Paris, 1966. P. J. Collins and A. W. Roscoe,

*A note on metrisation*(to appear).

*A set of axioms for plane analysis situs*, Fund. Math.

**25**(1935), 13-28.

*Modern general topology*, Wolters-Noordhoff, Groningen, 1968.

## Bibliographic Information

- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**90**(1984), 631-640 - MSC: Primary 54E35; Secondary 54E15
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733418-9
- MathSciNet review: 733418