Boundary limits of subharmonic functions in the disc
HTML articles powered by AMS MathViewer
- by M. Stoll
- Proc. Amer. Math. Soc. 93 (1985), 567-568
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774024-0
- PDF | Request permission
Abstract:
In this note we prove the following: let $f\not \equiv - \infty$ be subharmonic in $\left | z \right | < 1$ satisfying $\lim \limits _{r \to 1} \int _0^{2\pi } {f(r{e^{i\theta }})d\theta = 0}$ with $f(z) \leqslant 0$; then \[ \lim \limits _{r \to 1} \sup (1 - r)\inf \limits _{\left | z \right | = r} f(z) = 0\].References
- Maurice Heins, The minimum modulus of a bounded analytic function, Duke Math. J. 14 (1947), 179–215. MR 20639 J. W. Littlewood, On functions subharmonic in a circle, II, Proc. London Math. Soc. (3) 28 (1929), 383-394.
- W. C. Nestlerode and M. Stoll, Radial limits of $n$-subharmonic functions in the polydisc, Trans. Amer. Math. Soc. 279 (1983), no. 2, 691–703. MR 709577, DOI 10.1090/S0002-9947-1983-0709577-4
- Joel H. Shapiro and Allen L. Shields, Unusual topological properties of the Nevanlinna class, Amer. J. Math. 97 (1975), no. 4, 915–936. MR 390227, DOI 10.2307/2373681
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 567-568
- MSC: Primary 31A20
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774024-0
- MathSciNet review: 774024