A note on global solvability of vector fields
HTML articles powered by AMS MathViewer
- by Jorge Hounie
- Proc. Amer. Math. Soc. 94 (1985), 61-64
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781057-7
- PDF | Request permission
Abstract:
We consider global solvability of complex vector fields on noncompact manifolds. The case of real vector fields had been considered by Malgrange, and Hörmander studied the complex case, assuming that the real and imaginary parts are everywhere linearly independent.References
- Fernando Cardoso and Jorge Hounie, First-order linear PDEs and uniqueness in the Cauchy problem, J. Differential Equations 33 (1979), no. 2, 239–248. MR 542672, DOI 10.1016/0022-0396(79)90090-1
- J. J. Duistermaat and L. Hörmander, Fourier integral operators. II, Acta Math. 128 (1972), no. 3-4, 183–269. MR 388464, DOI 10.1007/BF02392165
- J. Hounie, Globally hypoelliptic vector fields on compact surfaces, Comm. Partial Differential Equations 7 (1982), no. 4, 343–370. MR 652813, DOI 10.1080/03605308208820226 L. Hörmander, Propagation of singularities and semi-global existence theorems for (pseudo-) differential operators of principal type, Ann. of Math. (2) 108 (1978). —, Pseudo-differential operators of principal type, Singularities in Boundary Value Problems, NATO Adv. Study Inst. Ser., Nijhoff, The Hague, 1981. D. Kim, Ph.D. Thesis, Rutgers Univ., 1981.
- Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271–355 (French). MR 86990
- Héctor J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171–188. MR 321133, DOI 10.1090/S0002-9947-1973-0321133-2
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 61-64
- MSC: Primary 35F99; Secondary 35A99, 58G99
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781057-7
- MathSciNet review: 781057