Invariant distances related to the Bergman function
HTML articles powered by AMS MathViewer
- by T. Mazur, P. Pflug and M. Skwarczyński
- Proc. Amer. Math. Soc. 94 (1985), 72-76
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781059-0
- PDF | Request permission
Abstract:
Let $D$ be a bounded domain in ${{\mathbf {C}}^n}$. The invariant distance in $D$ is given by \[ {\rho _D}(z,w) = {\left ( {1 - {{\left ( {\frac {{{K_D}(z,w){K_D}(w,z)}}{{{K_D}(z,z){K_D}(w,w)}}} \right )}^{1/2}}} \right )^{1/2}}.\] It is shown that one half of the length of a piecewise ${C^1}$ curve $\gamma :[a,b] \to D$ with respect to the Bergman metric is equal to the length of $\gamma$ measured by ${\rho _D}$, which implies that the associated inner distance $\rho _D^*$ coincides (up to the factor $\tfrac {1}{2}$) with the Bergman-distance. Also it was proved that ${\rho _D}$ is not an inner distance.References
- Stefan Bergman, The kernel function and conformal mapping, Second, revised edition, Mathematical Surveys, No. V, American Mathematical Society, Providence, R.I., 1970. MR 0507701
- Shoshichi Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267–290. MR 112162, DOI 10.1090/S0002-9947-1959-0112162-5
- Peter Pflug, Various applications of the existence of well growing holomorphic functions, Functional analysis, holomorphy and approximation theory (Rio de Janeiro, 1980) North-Holland Math. Stud., vol. 71, North-Holland, Amsterdam, 1982, pp. 391–412. MR 691173
- Takeo Ohsawa, A remark on the completeness of the Bergman metric, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), no. 4, 238–240. MR 618233
- Hans-Jörg Reiffen, Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik, Math. Ann. 161 (1965), 315–324 (German). MR 196133, DOI 10.1007/BF01359970
- M. Skwarczyński, The invariant distance in the theory of pseudoconformal transformations and the Lu Qi-keng conjecture, Proc. Amer. Math. Soc. 22 (1969), 305–310. MR 244512, DOI 10.1090/S0002-9939-1969-0244512-5
- Maciej Skwarczyński, Biholomorphic invariants related to the Bergman function, Dissertationes Math. (Rozprawy Mat.) 173 (1980), 59. MR 575756
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 72-76
- MSC: Primary 32H15; Secondary 32H10
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781059-0
- MathSciNet review: 781059