Invariant distances related to the Bergman function

Authors:
T. Mazur, P. Pflug and M. Skwarczyński

Journal:
Proc. Amer. Math. Soc. **94** (1985), 72-76

MSC:
Primary 32H15; Secondary 32H10

DOI:
https://doi.org/10.1090/S0002-9939-1985-0781059-0

MathSciNet review:
781059

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $D$ be a bounded domain in ${{\mathbf {C}}^n}$. The invariant distance in $D$ is given by \[ {\rho _D}(z,w) = {\left ( {1 - {{\left ( {\frac {{{K_D}(z,w){K_D}(w,z)}}{{{K_D}(z,z){K_D}(w,w)}}} \right )}^{1/2}}} \right )^{1/2}}.\] It is shown that one half of the length of a piecewise ${C^1}$ curve $\gamma :[a,b] \to D$ with respect to the Bergman metric is equal to the length of $\gamma$ measured by ${\rho _D}$, which implies that the associated inner distance $\rho _D^*$ coincides (up to the factor $\tfrac {1}{2}$) with the Bergman-distance. Also it was proved that ${\rho _D}$ is not an inner distance.

- Stefan Bergman,
*The kernel function and conformal mapping*, Second, revised edition, American Mathematical Society, Providence, R.I., 1970. Mathematical Surveys, No. V. MR**0507701** - Shoshichi Kobayashi,
*Geometry of bounded domains*, Trans. Amer. Math. Soc.**92**(1959), 267–290. MR**112162**, DOI https://doi.org/10.1090/S0002-9947-1959-0112162-5 - Peter Pflug,
*Various applications of the existence of well growing holomorphic functions*, Functional analysis, holomorphy and approximation theory (Rio de Janeiro, 1980) North-Holland Math. Stud., vol. 71, North-Holland, Amsterdam, 1982, pp. 391–412. MR**691173** - Takeo Ohsawa,
*A remark on the completeness of the Bergman metric*, Proc. Japan Acad. Ser. A Math. Sci.**57**(1981), no. 4, 238–240. MR**618233** - Hans-Jörg Reiffen,
*Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik*, Math. Ann.**161**(1965), 315–324 (German). MR**196133**, DOI https://doi.org/10.1007/BF01359970 - M. Skwarczyński,
*The invariant distance in the theory of pseudoconformal transformations and the Lu Qi-keng conjecture*, Proc. Amer. Math. Soc.**22**(1969), 305–310. MR**244512**, DOI https://doi.org/10.1090/S0002-9939-1969-0244512-5 - Maciej Skwarczyński,
*Biholomorphic invariants related to the Bergman function*, Dissertationes Math. (Rozprawy Mat.)**173**(1980), 59. MR**575756**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
32H15,
32H10

Retrieve articles in all journals with MSC: 32H15, 32H10

Additional Information

Article copyright:
© Copyright 1985
American Mathematical Society