## Resonance and bifurcation of higher-dimensional tori

HTML articles powered by AMS MathViewer

- by Dietrich Flockerzi PDF
- Proc. Amer. Math. Soc.
**94**(1985), 147-157 Request permission

## Abstract:

By means of an example it is shown that a supercritical bifurcation of an invariant $2$-torus into an invariant $3$-torus prevailing in the case of nonresonance may be replaced by a transcritical bifurcation into a pinched invariant $3$-torus in the case of resonance. The connections of these bifurcation phenomena with the properties of the spectrum of the underlying invariant $2$-torus are discussed.## References

- J. C. Alexander and James A. Yorke,
*Global bifurcations of periodic orbits*, Amer. J. Math.**100**(1978), no. 2, 263–292. MR**474406**, DOI 10.2307/2373851 - Shui Nee Chow and Jack K. Hale,
*Methods of bifurcation theory*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR**660633** - Dietrich Flockerzi,
*Generalized bifurcation of higher-dimensional tori*, J. Differential Equations**55**(1984), no. 3, 346–367. MR**766128**, DOI 10.1016/0022-0396(84)90074-3
K. R. Meyer, - Robert J. Sacker,
*Existence of dichotomies and invariant splittings for linear differential systems. IV*, J. Differential Equations**27**(1978), no. 1, 106–137. MR**477315**, DOI 10.1016/0022-0396(78)90115-8 - Robert J. Sacker and George R. Sell,
*A spectral theory for linear differential systems*, J. Differential Equations**27**(1978), no. 3, 320–358. MR**501182**, DOI 10.1016/0022-0396(78)90057-8 - George R. Sell,
*Bifurcation of higher-dimensional tori*, Arch. Rational Mech. Anal.**69**(1979), no. 3, 199–230. MR**522524**, DOI 10.1007/BF00248134

*Tori in resonance*, Univ. of Minnesota preprint, 1983.

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**94**(1985), 147-157 - MSC: Primary 58F14; Secondary 34C45
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781073-5
- MathSciNet review: 781073