A priori bounds for positive solutions of a semilinear elliptic equation
HTML articles powered by AMS MathViewer
- by Chris Cosner and Klaus Schmitt
- Proc. Amer. Math. Soc. 95 (1985), 47-50
- DOI: https://doi.org/10.1090/S0002-9939-1985-0796444-0
- PDF | Request permission
Abstract:
We consider the semilinear elliptic equation $- \Delta u = f(u)$, $x \in \Omega$, subject to zero Dirichlet boundary conditions, where $\Omega \subset {{\mathbf {R}}^n}$ is a bounded domain with smooth boundary and the nonlinearity $f$ assumes both positive and negative values. Under the assumption that $\Omega$ satisfies certain symmetry conditions we establish two results providing lower bounds on the ${C^0}(\overline \Omega )$ norm of positive solutions. The bounds derived are the same one obtains in dimension $n = 1$.References
- A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl. 73 (1980), no. 2, 411–422. MR 563992, DOI 10.1016/0022-247X(80)90287-5
- Catherine Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 572958
- K. J. Brown and H. Budin, On the existence of positive solutions for a class of semilinear elliptic boundary value problems, SIAM J. Math. Anal. 10 (1979), no. 5, 875–883. MR 541087, DOI 10.1137/0510082
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879
- Peter Hess, On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm. Partial Differential Equations 6 (1981), no. 8, 951–961. MR 619753, DOI 10.1080/03605308108820200
- Bernhard Kawohl, A geometric property of level sets of solutions to semilinear elliptic Dirichlet problems, Applicable Anal. 16 (1983), no. 3, 229–233. MR 712734, DOI 10.1080/00036818308839471
- H.-O. Peitgen, D. Saupe, and K. Schmitt, Nonlinear elliptic boundary value problems versus their finite difference approximations: numerically irrelevant solutions, J. Reine Angew. Math. 322 (1981), 74–117. MR 603027
- H.-O. Peitgen and K. Schmitt, Global topological perturbations of nonlinear elliptic eigenvalue problems, Math. Methods Appl. Sci. 5 (1983), no. 3, 376–388. MR 716662, DOI 10.1002/mma.1670050125
- René P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 615561
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 47-50
- MSC: Primary 35J60; Secondary 35B45
- DOI: https://doi.org/10.1090/S0002-9939-1985-0796444-0
- MathSciNet review: 796444