Monic polynomials and generating ideals efficiently
HTML articles powered by AMS MathViewer
- by Budh Nashier PDF
- Proc. Amer. Math. Soc. 95 (1985), 338-340 Request permission
Abstract:
If $I$ is an ideal containing a monic polynomial in $R[T]$ where $R$ is a semilocal ring, then $I$ and $I/{I^2}$ require the same minimal number of generators. An ideal containing a monic polynomial in a polynomial ring need not possess any minimal set of generators having a monic as a part of it.References
- Daniel Ferrand, Suite régulière et intersection complète, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A427–A428 (French). MR 219546 A. V. Geramita and C. Small, Introduction to homological methods in commutative rings, Queen’s Papers in Pure and Applied Mathematics, Vol. 43 (2nd ed.), Kingston, Ontario, Canada, 1979.
- T. Y. Lam, Serre’s conjecture, Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, Berlin-New York, 1978. MR 0485842
- S. Mandal, On efficient generation of ideals, Invent. Math. 75 (1984), no. 1, 59–67. MR 728138, DOI 10.1007/BF01403089
- Wolmer V. Vasconcelos, Ideals generated by $R$-sequences, J. Algebra 6 (1967), 309–316. MR 213345, DOI 10.1016/0021-8693(67)90086-5
Additional Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 338-340
- MSC: Primary 13C05; Secondary 13F20
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806066-0
- MathSciNet review: 806066