A Hörmander type criterion for quasiradial Fourier multipliers
HTML articles powered by AMS MathViewer
- by Henry Dappa and Hajo Luers
- Proc. Amer. Math. Soc. 95 (1985), 419-424
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806080-5
- PDF | Request permission
Abstract:
We state practicable sufficient conditions on quasi-radial functions $m \circ \rho (\xi ) = m(\rho (\xi ))$ to be Fourier multipliers in ${L^p}({{\mathbf {R}}^n})$. Here $m$ is a bounded function and $\rho$ is a homogeneous distance function. The conditions on $m$ are given in terms of localized Bessel potentials and those on $\rho$ reflect and generalize basic properties of the norm in ${{\mathbf {R}}^n}$. The results are related to those of Madych [7] and Fabes and Rivière [3] and improve their results (specialized to quasi-radial multipliers). The proof utilizes Madych’s approach [7] and interpolation properties of localized Bessel potential spaces [2].References
- O. V. Besov, V. P. Il’ in and P. I. Lizorkin, ${L^p}$-estimates of a certain class of nonisotropic singular integrals, Soviet Math. Dokl. 7 (1966), 1065-1069.
- W. C. Connett and A. L. Schwartz, The theory of ultraspherical multipliers, Mem. Amer. Math. Soc. 9 (1977), no. 183, iv+92. MR 435708, DOI 10.1090/memo/0183
- E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19–38. MR 209787, DOI 10.4064/sm-27-1-19-38
- Charles Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44–52. MR 320624, DOI 10.1007/BF02771772
- George Gasper and Walter Trebels, A characterization of localized Bessel potential spaces and applications to Jacobi and Hankel multipliers, Studia Math. 65 (1979), no. 3, 243–278. MR 567079, DOI 10.4064/sm-65-3-243-278
- Jörgen Löfström, Some theorems on interpolation spaces with applications to approximations in $L_{p}$, Math. Ann. 172 (1967), 176–196. MR 218814, DOI 10.1007/BF01351183
- Wolodymyr R. Madych, On Littlewood-Paley functions, Studia Math. 50 (1974), 43–63. MR 344797, DOI 10.4064/sm-50-1-43-63
- Jaak Peetre, Applications de la théorie des espaces d’interpolation dans l’analyse harmonique, Ricerche Mat. 15 (1966), 3–36 (French). MR 221214
- J. C. Peral and A. Torchinsky, Multipliers in $H^{p}(\textbf {R}^{n})$, $0<p<\infty$, Ark. Mat. 17 (1979), no. 2, 225–235. MR 608317, DOI 10.1007/BF02385470
- N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243–278. MR 440268, DOI 10.1007/BF02383650
- Sigrid Sjöstrand, On the Riesz means of the solutions of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 24 (1970), 331–348. MR 270219 E. M. Stein, Classes ${H^p}$ et multiplicateurs: Cas $n$-dimensionnel, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A107-A108. —, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1971.
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 419-424
- MSC: Primary 42B15; Secondary 46E35
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806080-5
- MathSciNet review: 806080