Structure of the efficient point set
HTML articles powered by AMS MathViewer
- by Đinh The Lục
- Proc. Amer. Math. Soc. 95 (1985), 433-440
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806083-0
- PDF | Request permission
Abstract:
Let $C$ be a nontrivial cone and $X$ be a set in the $n$-dimensional Euclidean space. Denote by ${\text {E}}(X|C)$ the set of all efficient points of $X$ with respect to $C$. It will be proven that under some adequate assumptions ${\text {E}}(X|C)$ is homeomorphic to a simplex while $n = 2$, and for $n > 2$ it is a contractible set. Furthermore, the set of all weak efficient points of $X$ with respect to $C$ is arcwise connected and its local contractibility is equivalent to being a retract of $X$. The results presented in this study cover all topological properties of the efficient point set which have been obtained by Peleg and Morozov for the case when $C$ is the nonnegative orthant.References
- C. Berger, Topological space, Macmillan, New York, 1963.
- K. Bergstresser, A. Charnes, and P. L. Yu, Generalization of domination structures and nondominated solutions in multicriteria decision making, J. Optim. Theory Appl. 18 (1976), no. 1, 3–13. Differential game issue. MR 426810, DOI 10.1007/BF00933790
- Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473
- H. W. Corley, Duality theory for maximizations with respect to cones, J. Math. Anal. Appl. 84 (1981), no. 2, 560–568. MR 639684, DOI 10.1016/0022-247X(81)90188-8
- Gerard Debreu, Valuation equilibrium and Pareto optimum, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 588–592. MR 65896, DOI 10.1073/pnas.40.7.588
- J. Dugundji, Absolute neighborhood retracts and local connectedness in arbitrary metric spaces, Compositio Math. 13 (1958), 229–246 (1958). MR 113217 V. V. Morozov, On properties of the set of nondominated vectors, Vestnik Moskov. Univ. Comput. Sci. Cyber. 4 (1977), 51-61.
- Bezalel Peleg, Topological properties of the efficient point set, Proc. Amer. Math. Soc. 35 (1972), 531–536. MR 303916, DOI 10.1090/S0002-9939-1972-0303916-2 V. V. Podinovskji and V. D. Nogin, Pareto optimal solutions in multicriteria optimization problems, Nauka, Moscow, 1982.
- Stephen Schecter, Structure of the demand function and Pareto optimal set with natural boundary conditions, J. Math. Econom. 5 (1978), no. 1, 1–21. MR 497585, DOI 10.1016/0304-4068(78)90002-2
- S. Smale, Global analysis and economics. V. Pareto theory with constraints, J. Math. Econom. 1 (1974), no. 3, 213–221. MR 426826, DOI 10.1016/0304-4068(74)90013-5
- A. R. Warburton, Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives, J. Optim. Theory Appl. 40 (1983), no. 4, 537–557. MR 717176, DOI 10.1007/BF00933970
- P. L. Yu and M. Zeleny, The set of all nondominated solutions in linear cases and a multicriteria simplex method, J. Math. Anal. Appl. 49 (1975), 430–468. MR 421660, DOI 10.1016/0022-247X(75)90189-4
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 433-440
- MSC: Primary 49A50; Secondary 90A14, 90C31
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806083-0
- MathSciNet review: 806083