Weak convergence of the empirical characteristic function
HTML articles powered by AMS MathViewer
- by J. E. Yukich
- Proc. Amer. Math. Soc. 95 (1985), 470-473
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806089-1
- PDF | Request permission
Abstract:
Let $P$ be a probability measure on ${\mathbf {R}}$ such that the density $f(x)$ for $P$ exists and there exists ${x_0} > 0$ such that $f(x) + f( - x)$ is decreasing for all $\left | x \right | \geqslant {x_0}$. Let $c(t)$ be the characteristic function for $P$, ${c_n}(t)$ the empirical characteristic function, and let ${C_n}(t): = {n^{1/2}}({c_n}(t) - c(t))$. New necessary and sufficient metric entropy conditions are obtained for the weak convergence of ${C_n}(t)$ on the space of continuous complex valued functions on $[ - \tfrac {1}{2},\tfrac {1}{2}]$. The result is used to characterize the weak convergence of ${C_n}(t)$ in terms of the tail behavior of $P$ and it also provides the first step towards a generalization of the Borisov-Dudley-Durst theorem. It also provides a partial response to a challenge raised by Dudley.References
- I. S. Borisov, On the question of the accuracy of approximation in the central limit theorem for empirical measures, Sibirsk. Mat. Zh. 24 (1983), no. 6, 14–25 (Russian). MR 731039
- Sándor Csörgő, Limit behaviour of the empirical characteristic function, Ann. Probab. 9 (1981), no. 1, 130–144. MR 606802
- R. M. Dudley, A course on empirical processes, École d’été de probabilités de Saint-Flour, XII—1982, Lecture Notes in Math., vol. 1097, Springer, Berlin, 1984, pp. 1–142. MR 876079, DOI 10.1007/BFb0099432
- Mark Durst and Richard M. Dudley, Empirical processes, Vapnik-Chervonenkis classes and Poisson processes, Probab. Math. Statist. 1 (1980), no. 2, 109–115 (1981). MR 626305
- Michael B. Marcus, Weak convergence of the empirical characteristic function, Ann. Probab. 9 (1981), no. 2, 194–201. MR 606982
- J. E. Yukich, Laws of large numbers for classes of functions, J. Multivariate Anal. 17 (1985), no. 3, 245–260. MR 813235, DOI 10.1016/0047-259X(85)90083-1
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 470-473
- MSC: Primary 60B10; Secondary 60F05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806089-1
- MathSciNet review: 806089