The Euler characteristic and inequalities for Kleinian groups
HTML articles powered by AMS MathViewer
- by William Abikoff
- Proc. Amer. Math. Soc. 97 (1986), 593-601
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845971-7
- PDF | Request permission
Abstract:
A class of torsion-free finitely generated Kleinian groups is defined. For groups $G$ in this class, sharp versions—with error terms—of standard inequalities are given. Also, sharp estimates are given for the number of cusps and the sum of the ranks of maximal nonconjugate cyclic parabolic subgroups.References
- William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044
- Lars V. Ahlfors, Eichler integrals and the area theorem of Bers, Michigan Math. J. 15 (1968), 257–263. MR 247078
- Lipman Bers, Inequalities for finitely generated Kleinian groups, J. Analyse Math. 18 (1967), 23–41. MR 229817, DOI 10.1007/BF02798032
- Lipman Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2) 91 (1970), 570–600. MR 297992, DOI 10.2307/1970638
- Irwin Kra, On cohomology of Kleinian groups. IV. The Ahlfors-Sullivan construction of holomorphic Eichler integrals, J. Analyse Math. 43 (1983/84), 51–87. MR 777412, DOI 10.1007/BF02790178
- Albert Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974), 383–462. MR 349992, DOI 10.2307/1971059
- Bernard Maskit, On boundaries of Teichmüller spaces and on Kleinian groups. II, Ann. of Math. (2) 91 (1970), 607–639. MR 297993, DOI 10.2307/1970640
- G. P. Scott, Compact submanifolds of $3$-manifolds, J. London Math. Soc. (2) 7 (1973), 246–250. MR 326737, DOI 10.1112/jlms/s2-7.2.246
- Dennis Sullivan, A finiteness theorem for cusps, Acta Math. 147 (1981), no. 3-4, 289–299. MR 639042, DOI 10.1007/BF02392876
- Friedhelm Waldhausen, Eine Verallgemeinerung des Schleifensatzes, Topology 6 (1967), 501–504 (German). MR 220300, DOI 10.1016/0040-9383(67)90007-9
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
- C. T. C. Wall, Rational Euler characteristics, Proc. Cambridge Philos. Soc. 57 (1961), 182–184. MR 122853, DOI 10.1017/s030500410003499x
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 593-601
- MSC: Primary 30F40; Secondary 57N10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845971-7
- MathSciNet review: 845971