On the univalent functions starlike with respect to a boundary point
HTML articles powered by AMS MathViewer
- by Pavel G. Todorov
- Proc. Amer. Math. Soc. 97 (1986), 602-604
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845972-9
- PDF | Request permission
Abstract:
For the examined functions, we have obtained a structure formula and estimates for $|f(z)/(1 - z)|{\text { }}$ and $|\arg (f(z)/(1 - z))|$, the moduli of the partial sums of the coefficient series and the moduli of the coefficients.References
- M. S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981), no. 2, 327–345. MR 622822, DOI 10.1016/0022-247X(81)90067-6
- Abdallah Lyzzaik, On a conjecture of M. S. Robertson, Proc. Amer. Math. Soc. 91 (1984), no. 1, 108– 110. MR 735575, DOI 10.1090/S0002-9939-1984-0735575-7 C. Carathéodory, Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193-217.
- G. M. Goluzin, Geometricheskaya teoriya funktsiĭ kompleksnogo peremennogo, 2nd ed., Izdat. “Nauka”, Moscow, 1966 (Russian). Edited by V. I. Smirnov; With a supplement by N. A. Lebedev, G. V. Kuzmina and Ju. E. Alenicyn. MR 0219714
- I. Ya. Ašnevic and G. V. Ulina, On regions of values of analytic functions represented by a Stieltjes integral, Vestnik Leningrad. Univ. 10 (1955), no. 11, 31–42 (Russian). MR 0074515
- M. S. Robertson, Quasi-subordinate functions, Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 311–330. MR 0273004
- Malcolm I. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), no. 2, 374–408. MR 1503286, DOI 10.2307/1968451
- Albert Schild, On starlike functions of order $\alpha$, Amer. J. Math. 87 (1965), 65–70. MR 174729, DOI 10.2307/2373224
- Bernard Pinchuk, On starlike and convex functions of order $\alpha$, Duke Math. J. 35 (1968), 721–734. MR 230896
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 602-604
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845972-9
- MathSciNet review: 845972