Schrödinger equations: pointwise convergence to the initial data
HTML articles powered by AMS MathViewer
- by Luis Vega
- Proc. Amer. Math. Soc. 102 (1988), 874-878
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934859-0
- PDF | Request permission
Abstract:
Let $u(x,t)$ be the solution of the Schrödinger equation with initial data $f$ in the Sobolev space ${H^s}({{\mathbf {R}}^n})$ with $s > \frac {1}{2}$. The a.e. convergence of $u(x,t)$ to $f(x)$ follows from a weighted estimate of the maximal function $u * (x,t) = {\text {su}}{{\text {p}}_{t > 0}}|u(x,t)|$.References
- Anthony Carbery, Radial Fourier multipliers and associated maximal functions, Recent progress in Fourier analysis (El Escorial, 1983) North-Holland Math. Stud., vol. 111, North-Holland, Amsterdam, 1985, pp. 49–56. MR 848141, DOI 10.1016/S0304-0208(08)70279-2
- Lennart Carleson, Some analytic problems related to statistical mechanics, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 5–45. MR 576038
- A. Córdoba, A note on Bochner-Riesz operators, Duke Math. J. 46 (1979), no. 3, 505–511. MR 544242, DOI 10.1215/S0012-7094-79-04625-8
- Michael G. Cowling, Pointwise behavior of solutions to Schrödinger equations, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 83–90. MR 729347, DOI 10.1007/BFb0069152
- Björn E. J. Dahlberg and Carlos E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, Harmonic analysis (Minneapolis, Minn., 1981) Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 205–209. MR 654188
- Carlos E. Kenig and Alberto Ruiz, A strong type $(2,\,2)$ estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), no. 1, 239–246. MR 712258, DOI 10.1090/S0002-9947-1983-0712258-4
- Per Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), no. 3, 699–715. MR 904948, DOI 10.1215/S0012-7094-87-05535-9
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 874-878
- MSC: Primary 35J10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934859-0
- MathSciNet review: 934859