## Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials

HTML articles powered by AMS MathViewer

- by Mark S. Ashbaugh and Rafael Benguria PDF
- Proc. Amer. Math. Soc.
**105**(1989), 419-424 Request permission

## Abstract:

We prove the optimal lower bound ${\lambda _2} - {\lambda _1} \geq 3{\pi ^2}/{d^2}$ for the difference of the first two eigenvalues of a one-dimensional Schrödinger operator $- {d^2}/d{x^2} + V(x)$ with a symmetric single-well potential on an interval of length $d$ and with Dirichlet boundary conditions. Equality holds if and only if the potential is constant. More generally, we prove the inequality ${\lambda _2}[{V_1}] - {\lambda _1}[{V_1}] \geq {\lambda _2}[{V_0}] - {\lambda _1}[{V_0}]$ in the case where ${V_1}$ and ${V_0}$ are symmetric and ${V_1} - {V_0}$ is a single-well potential.## References

- Mark S. Ashbaugh and Rafael Benguria,
*Best constant for the ratio of the first two eigenvalues of one-dimensional Schrödinger operators with positive potentials*, Proc. Amer. Math. Soc.**99**(1987), no. 3, 598–599. MR**875408**, DOI 10.1090/S0002-9939-1987-0875408-4 - E. B. Davies,
*Structural isomers, double wells, resonances, and Dirichlet decoupling*, Ann. Physics**157**(1984), no. 1, 166–182. MR**761771**, DOI 10.1016/0003-4916(84)90051-4 - Evans M. Harrell,
*Double wells*, Comm. Math. Phys.**75**(1980), no. 3, 239–261. MR**581948**, DOI 10.1007/BF01212711 - Evans M. Harrell,
*On the rate of asymptotic eigenvalue degeneracy*, Comm. Math. Phys.**60**(1978), no. 1, 73–95. MR**486764**, DOI 10.1007/BF01609474 - W. Kirsch and B. Simon,
*Universal lower bounds on eigenvalue splittings for one-dimensional Schrödinger operators*, Comm. Math. Phys.**97**(1985), no. 3, 453–460. MR**778626**, DOI 10.1007/BF01213408 - Werner Kirsch and Barry Simon,
*Comparison theorems for the gap of Schrödinger operators*, J. Funct. Anal.**75**(1987), no. 2, 396–410. MR**916759**, DOI 10.1016/0022-1236(87)90103-0 - Shu Nakamura,
*A remark on eigenvalue splittings for one-dimensional double-well Hamiltonians*, Lett. Math. Phys.**11**(1986), no. 4, 337–340. MR**845744**, DOI 10.1007/BF00574159 - I. M. Singer, Bun Wong, Shing-Tung Yau, and Stephen S.-T. Yau,
*An estimate of the gap of the first two eigenvalues in the Schrödinger operator*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**12**(1985), no. 2, 319–333. MR**829055** - Qi Huang Yu and Jia Qing Zhong,
*Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator*, Trans. Amer. Math. Soc.**294**(1986), no. 1, 341–349. MR**819952**, DOI 10.1090/S0002-9947-1986-0819952-8

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**105**(1989), 419-424 - MSC: Primary 81C05; Secondary 34B25
- DOI: https://doi.org/10.1090/S0002-9939-1989-0942630-X
- MathSciNet review: 942630