A generalized Poincaré inequality for Gaussian measures
HTML articles powered by AMS MathViewer
- by William Beckner
- Proc. Amer. Math. Soc. 105 (1989), 397-400
- DOI: https://doi.org/10.1090/S0002-9939-1989-0954373-7
- PDF | Request permission
Abstract:
New inequalities are obtained which interpolate in a sharp way between the Poincaré inequality and the logarithmic Sobolev inequality for both Gaussian measure and spherical surface measure.References
- Dominique Bakry and Michel Émery, Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 15, 775–778 (French, with English summary). MR 772092
- William Beckner, Inequalities in Fourier analysis, Ann. of Math. (2) 102 (1975), no. 1, 159–182. MR 385456, DOI 10.2307/1970980 W. Beckner, Sobolev inequalities, the Poisson semigroup and analysis on the sphere ${S^n}$, Proc. Nat. Acad. Sci. (to appear).
- Herman Chernoff, A note on an inequality involving the normal distribution, Ann. Probab. 9 (1981), no. 3, 533–535. MR 614640
- Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061–1083. MR 420249, DOI 10.2307/2373688
- H. P. McKean, Geometry of differential space, Ann. Probability 1 (1973), 197–206. MR 353471, DOI 10.1214/aop/1176996973
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI 10.2307/2372841
- Edward Nelson, The free Markoff field, J. Functional Analysis 12 (1973), 211–227. MR 0343816, DOI 10.1016/0022-1236(73)90025-6 H. Weyl, The theory of groups and quantum mechanics, Dover Publications, New York, 1949.
- Norbert Wiener, The Fourier integral and certain of its applications, Dover Publications, Inc., New York, 1959. MR 0100201
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 397-400
- MSC: Primary 42C15; Secondary 42C05, 58G32, 60G15
- DOI: https://doi.org/10.1090/S0002-9939-1989-0954373-7
- MathSciNet review: 954373