## Oscillation theorems for second order nonlinear differential equations

HTML articles powered by AMS MathViewer

- by James S. W. Wong
- Proc. Amer. Math. Soc.
**106**(1989), 1069-1077 - DOI: https://doi.org/10.1090/S0002-9939-1989-0952324-2
- PDF | Request permission

## Abstract:

Oscillation criteria for the second-order nonlinear differential equation $x'' + a\left ( t \right ){\left | x \right |^y}\operatorname {sgn} x = 0 \gamma \ne 1$, are studied where the coefficient $a\left ( t \right )$ is not assumed to be non-negative. New proofs are given to theorems of Butler, and extend earlier results of the author.## References

- F. V. Atkinson,
*On second-order non-linear oscillations*, Pacific J. Math.**5**(1955), 643–647. MR**72316**, DOI 10.2140/pjm.1955.5.643
S. Belohorec, - G. J. Butler,
*On the oscillatory behaviour of a second order nonlinear differential equation*, Ann. Mat. Pura Appl. (4)**105**(1975), 73–92. MR**425252**, DOI 10.1007/BF02414924 - G. J. Butler,
*The existence of continuable solutions of a second order differential equation*, Canadian J. Math.**29**(1977), no. 3, 472–479. MR**499370**, DOI 10.4153/CJM-1977-051-7 - G. J. Butler,
*Integral averages and the oscillation of second order ordinary differential equations*, SIAM J. Math. Anal.**11**(1980), no. 1, 190–200. MR**556509**, DOI 10.1137/0511017 - W. J. Coles,
*Oscillation criteria for nonlinear second order equations*, Ann. Mat. Pura Appl. (4)**82**(1969), 123–133. MR**255907**, DOI 10.1007/BF02410793 - William Benjamin Fite,
*Concerning the zeros of the solutions of certain differential equations*, Trans. Amer. Math. Soc.**19**(1918), no. 4, 341–352. MR**1501107**, DOI 10.1090/S0002-9947-1918-1501107-2 - Philip Hartman,
*On non-oscillatory linear differential equations of second order*, Amer. J. Math.**74**(1952), 389–400. MR**48667**, DOI 10.2307/2372004 - Philip Hartman,
*Ordinary differential equations*, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR**0171038** - I. V. Kamenev,
*Certain specifically nonlinear oscillation theorems*, Mat. Zametki**10**(1971), 129–134 (Russian). MR**287077** - I. V. Kamenev,
*An integral test for conjugacy for second order linear differential equations*, Mat. Zametki**23**(1978), no. 2, 249–251 (Russian). MR**486798** - Walter Leighton,
*The detection of the oscillation of solutions of a second order linear differential equation*, Duke Math. J.**17**(1950), 57–61. MR**32065** - Paul Waltman,
*An oscillation criterion for a nonlinear second order equation*, J. Math. Anal. Appl.**10**(1965), 439–441. MR**173050**, DOI 10.1016/0022-247X(65)90138-1 - D. Willett,
*On the oscillatory behavior of the solutions of second order linear differential equations*, Ann. Polon. Math.**21**(1969), 175–194. MR**249723**, DOI 10.4064/ap-21-2-175-194 - Aurel Wintner,
*A criterion of oscillatory stability*, Quart. Appl. Math.**7**(1949), 115–117. MR**28499**, DOI 10.1090/S0033-569X-1949-28499-6 - James S. W. Wong,
*Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients*, Trans. Amer. Math. Soc.**144**(1969), 197–215. MR**251305**, DOI 10.1090/S0002-9947-1969-0251305-6 - James S. W. Wong,
*A second order nonlinear oscillation theorem*, Proc. Amer. Math. Soc.**40**(1973), 487–491. MR**318585**, DOI 10.1090/S0002-9939-1973-0318585-6 - James S. W. Wong,
*Oscillation theorems for second order nonlinear differential equations*, Bull. Inst. Math. Acad. Sinica**3**(1975), no. 2, 283–309. MR**390372** - James S. W. Wong,
*On the generalized Emden-Fowler equation*, SIAM Rev.**17**(1975), 339–360. MR**367368**, DOI 10.1137/1017036 - James S. W. Wong,
*An oscillation criterion for second order nonlinear differential equations*, Proc. Amer. Math. Soc.**98**(1986), no. 1, 109–112. MR**848886**, DOI 10.1090/S0002-9939-1986-0848886-3

*Oscillatory solutions of certain nonlinear differential equations of the second order*, Mat. Casopis Sloven. Akad. Vied.

**11**(1961), 250-255.

## Bibliographic Information

- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**106**(1989), 1069-1077 - MSC: Primary 34C10; Secondary 34A34, 34C15
- DOI: https://doi.org/10.1090/S0002-9939-1989-0952324-2
- MathSciNet review: 952324