Manifolds with $(\textbf {Z}_ 2)^ k$-action
HTML articles powered by AMS MathViewer
- by Pedro L. Q. Pergher
- Proc. Amer. Math. Soc. 106 (1989), 1091-1094
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969320-1
- PDF | Request permission
Abstract:
Let $\left ( {{M^n},{T_1}, \ldots ,{T_k}} \right )$ be a closed manifold with differentiable ${\left ( {{{\mathbf {Z}}_2}} \right )^k}$-action. The purpose of this paper is to show how to construct the bordism class $[{M^n}]$ in terms of the decomposed form of the fixed point data of this action.References
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- R. E. Stong, Equivariant bordism and $(Z_{2})^{k}$ actions, Duke Math. J. 37 (1970), 779–785. MR 271966, DOI 10.1215/S0012-7094-70-03793-2
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 1091-1094
- MSC: Primary 57R85; Secondary 55N22, 57S17
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969320-1
- MathSciNet review: 969320