Lattice-isotopic arrangements are topologically isomorphic
HTML articles powered by AMS MathViewer
- by Richard Randell
- Proc. Amer. Math. Soc. 107 (1989), 555-559
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984812-7
- PDF | Request permission
Abstract:
We prove that arrangements which are connected through a smooth family with constant intersection lattice have the same topology.References
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7 J. Mather, Notes on topological stability, Harvard University, 1970, mimeographed notes.
- Peter Orlik, Introduction to arrangements, CBMS Regional Conference Series in Mathematics, vol. 72, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR 1006880, DOI 10.1090/cbms/072
- Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. MR 558866, DOI 10.1007/BF01392549
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 555-559
- MSC: Primary 57Q37; Secondary 32C40
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984812-7
- MathSciNet review: 984812