Uniform bounds for isoperimetric problems
HTML articles powered by AMS MathViewer
- by Jerrold Siegel and Frank Williams
- Proc. Amer. Math. Soc. 107 (1989), 459-464
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984815-2
- PDF | Request permission
Abstract:
In this paper we generalize our previous joint work with Allan Calder on the width of homotopies by considering an arbitrary finite polyhedral pair $\left ( {W,V} \right )$ rather than $\left ( {I,\left \{ {0,1} \right \}} \right )$. We show that given appropriate topological conditions on a Riemannian manifold $M$, with respect to $\left ( {W.V} \right )$, there are bounds, ${B_q}\left ( {a,\left ( {W,V} \right ),M} \right )$, such that if $F:K \times W \to M$ is a map with ${\text {Lip}}\left ( {F\left | {\left ( {K \times V} \right )} \right .} \right ) < a$, then $F$ can be deformed ${\text {rel}}\left ( {K \times V} \right )$ to $F’$ with ${\text {Lip}}\left ( {F’} \right ) < {B_q}\left ( {a,\left ( {W,V} \right ),M} \right ) + \varepsilon$, where $\varepsilon > 0$ is arbitrary and $\dim \left ( K \right ) = q$.References
- Allan Calder and Jerrold Siegel, On the width of homotopies, Topology 19 (1980), no. 3, 209–220. MR 579572, DOI 10.1016/0040-9383(80)90008-7
- Allan Calder and Jerrold Siegel, Homotopies of bounded width are almost Lipschitz, Topology Appl. 14 (1982), no. 2, 117–129. MR 667658, DOI 10.1016/0166-8641(82)90062-1
- Allan Calder, Jerrold Siegel, and Frank Williams, The width of homotopies into spheres, Topology 21 (1982), no. 3, 281–290. MR 649759, DOI 10.1016/0040-9383(82)90010-6
- Mikhael Gromov, Homotopical effects of dilatation, J. Differential Geometry 13 (1978), no. 3, 303–310. MR 551562
- Peter Hilton, Guido Mislin, and Joe Roitberg, Localization of nilpotent groups and spaces, North-Holland Mathematics Studies, No. 15, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0478146
- Albert T. Lundell, A Bott map for non-stable homotopy of the unitary group, Topology 8 (1969), 209–217. MR 238319, DOI 10.1016/0040-9383(69)90011-1
- Reinhard Olivier, Über die Dehnung von Sphärenbbildungen, Invent. Math. 1 (1966), 380–390 (German). MR 203651, DOI 10.1007/BF01389740
- Joseph Roitberg, Dilatation phenomena in the homotopy groups of spheres, Advances in Math. 15 (1975), 198–206. MR 375302, DOI 10.1016/0001-8708(75)90135-8
- Jerrold Siegel and Frank Williams, Numerical invariants of homotopies into spheres, Pacific J. Math. 110 (1984), no. 2, 417–428. MR 726499
- Jerrold Siegel and Frank Williams, Variational invariants of Riemannian manifolds, Trans. Amer. Math. Soc. 284 (1984), no. 2, 689–705. MR 743739, DOI 10.1090/S0002-9947-1984-0743739-6
- Jerrold Siegel and Frank Williams, Uniform bounds for equivariant homotopies, Topology Appl. 32 (1989), no. 1, 109–118. MR 1003302, DOI 10.1016/0166-8641(89)90009-6
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 459-464
- MSC: Primary 55P99; Secondary 58E05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984815-2
- MathSciNet review: 984815