A measure which is singular and uniformly locally uniform
Authors:
David Freedman and Jim Pitman
Journal:
Proc. Amer. Math. Soc. 108 (1990), 371-381
MSC:
Primary 28A12; Secondary 62F12, 62F15
DOI:
https://doi.org/10.1090/S0002-9939-1990-0990427-5
MathSciNet review:
990427
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An example is given of a singular measure on which is locally nearly uniform in the weak star topology. If this measure is used as a prior to estimate an unknown probability in coin tossing, the posterior is asymptotically normal.
- [1] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- [2] Stanisław Saks, Theory of the integral, Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach, Dover Publications, Inc., New York, 1964. MR 0167578
- [3] P. S. Laplace, Mémoire sur les intégrales définies et leur application aux probabilités, et spéciale ment à la recherche du milieu qu'il faut choisir entre les résultats des observations, Mémoires présentés à l'Académie des Sciences, Paris, 1809.
- [4] S. Bernstein, Theory of probability (in Russian), Moscow, 1917.
- [5] R. von Mises, Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin, (1931).
- [6] Lucien Le Cam, Asymptotic methods in statistical decision theory, Springer Series in Statistics, Springer-Verlag, New York, 1986. MR 856411
- [7] -, On the Bernstein-von Mises theorem, Technical report no. 57, Department of Statistics, University of California, Berkeley, (1986).
- [8] Antoni Zygmund, On lacunary trigonometric series, Trans. Amer. Math. Soc. 34 (1932), no. 3, 435–446. MR 1501647, https://doi.org/10.1090/S0002-9947-1932-1501647-3
- [9] -, Trigonometric Series, two volumes, The University Press, Cambridge, 1959.
- [10] P. Diaconis and D. Freedman, On the uniform consistency of Bayes estimates for multinomial probabilities, Technical report no. 137, Department of Statistics, University of California, Berkeley, 1988.
- [11] Yitzhak Katznelson, An introduction to harmonic analysis, Second corrected edition, Dover Publications, Inc., New York, 1976. MR 0422992
- [12] J. Peyière, Sur les produits de Riesz, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), 1453-1455.
- [13] Gavin Brown and William Moran, On orthogonality of Riesz products, Proc. Cambridge Philos. Soc. 76 (1974), 173–181. MR 350319, https://doi.org/10.1017/s0305004100048830
- [14] Gavin Brown and William Moran, Coin tossing and powers of singular measures, Math. Proc. Cambridge Philos. Soc. 77 (1975), 349–364. MR 358906, https://doi.org/10.1017/S0305004100051173
- [15] Gavin Brown, Singular infinitely divisible distributions whose characteristic functions vanish at infinity, Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 2, 277–287. MR 442600, https://doi.org/10.1017/S0305004100053913
- [16] Friedrich Riesz, Über die Fourierkoeffizienten einer stetigen Funktion von beschränkter Schwankung, Math. Z. 2 (1918), no. 3-4, 312–315 (German). MR 1544321, https://doi.org/10.1007/BF01199414
- [17] Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR 550606
- [18] D. Freedman and J. W. Pitman, A singular measure which is locally uniform, Technical report no. 163, Department of Statistics, University of California, Berkeley, 1988.
- [19] Shizuo Kakutani, On equivalence of infinite product measures, Ann. of Math. (2) 49 (1948), 214–224. MR 23331, https://doi.org/10.2307/1969123
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A12, 62F12, 62F15
Retrieve articles in all journals with MSC: 28A12, 62F12, 62F15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-0990427-5
Keywords:
Differentiation,
Lebesgue points,
Bayes estimates,
Riesz product,
singular measure,
locally uniform measure,
asymptotic normality of posterior distribution
Article copyright:
© Copyright 1990
American Mathematical Society