Minimal compactifications and their associated function spaces
Author:
Gary D. Faulkner
Journal:
Proc. Amer. Math. Soc. 108 (1990), 541-546
MSC:
Primary 54D35; Secondary 54C10, 54D40
DOI:
https://doi.org/10.1090/S0002-9939-1990-0991694-4
MathSciNet review:
991694
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper investigates the association between compactifications of a space which are minimal with respect to the extension of families of continuous functions and their associated subalgebras of .
- [1] George L. Cain Jr., Compact and related mappings, Duke Math. J. 33 (1966), 639–645. MR 200903
- [2] George L. Cain Jr., Mappings with prescribed singular sets, Nieuw Arch. Wisk. (3) 17 (1969), 200–203. MR 256364
- [3] George L. Cain, Richard E. Chandler, and Gary D. Faulkner, Singular sets and remainders, Trans. Amer. Math. Soc. 268 (1981), no. 1, 161–171. MR 628452, https://doi.org/10.1090/S0002-9947-1981-0628452-5
- [4] Richard E. Chandler, Hausdorff compactifications, Marcel Dekker, Inc., New York-Basel, 1976. Lecture Notes in Pure and Applied Mathematics, Vol. 23. MR 0515002
- [5] Richard E. Chandler and Gary D. Faulkner, Singular compactifications: the order structure, Proc. Amer. Math. Soc. 100 (1987), no. 2, 377–382. MR 884483, https://doi.org/10.1090/S0002-9939-1987-0884483-2
- [6] Richard E. Chandler, Gary D. Faulkner, Josephine P. Guglielmi, and Margaret C. Memory, Generalizing the Alexandroff-Urysohn double circumference construction, Proc. Amer. Math. Soc. 83 (1981), no. 3, 606–608. MR 627703, https://doi.org/10.1090/S0002-9939-1981-0627703-6
- [7] Richard E. Chandler and Ralph Gellar, The compactifications to which an element of 𝐶*(𝑋) extends, Proc. Amer. Math. Soc. 38 (1973), 637–639. MR 314003, https://doi.org/10.1090/S0002-9939-1973-0314003-2
- [8] Richard E. Chandler and Fu-Chien Tzung, Remainders in Hausdorff compactifications, Proc. Amer. Math. Soc. 70 (1978), no. 2, 196–202. MR 487981, https://doi.org/10.1090/S0002-9939-1978-0487981-3
- [9] Peter A. Loeb, A minimal compactification for extending continuous functions, Proc. Amer. Math. Soc. 18 (1967), 282–283. MR 216468, https://doi.org/10.1090/S0002-9939-1967-0216468-0
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D35, 54C10, 54D40
Retrieve articles in all journals with MSC: 54D35, 54C10, 54D40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-0991694-4
Keywords:
Compactification,
singular set,
algebra of functions
Article copyright:
© Copyright 1990
American Mathematical Society